

Datafox Mobil-MasterIV

Flexible data collection with method

Manual Datafox Mobil-MasterIV

Contents

1	Intro	luction 8	
	1.1	Jpdates in this document	
	1.2	Alterations of the version	
	1.3	The device file archive (*.dfz)	
		.3.1 Description	
		.3.2 Function of the archive	
		.3.3 Manual selection of a file	
	1.4	Typography of the manual	
	1.5	mportant general advice	
		9 9 9 9	
2	Syst	m structure and functional principle 12	
	2.1	Software versions and compatibility of device firmware and setup	
	2.2	Firmware	
		2.2.1 Firmware update	
		2.2.2 Firmware downgrade	
	2.3	System structure	
		2.3.1 Device functions	
		2.3.2 Communication	
3	Mol	-MasterIV 19	
	3.1	Technical data	
	3.2	Connection	
		3.2.1 Installing of Mobil-MasterIV for the operating mode "'Mobile Operation"' 24	
		3.2.2 Installation of Mobil-MasterIV for the operating mode "'Mobile operation with Power off"	25
		3.2.2.1 Status information of Mobil-MasterIV when installing and bringing into service 3	30
		3.2.2.2 Alterations of PIN/PUK via TimeboyIII	
		3.2.2.3 Calibration tour	
		33 Power supply	
		3.2.4 Digital Input	
		3.2.5 USB connector	
		3.2.6 Ethernet interface	
		3.2.7 Mobile communications modem	
		3.2.8 GPS coordinates	
		3.2.8.1 GPS data record structure	
	3.3	Commissioning	
	3.4	Operation	
	3.5	Communications	
		35.5.1 Communication via RS232	
		3.5.1.1 Requirement	
		3.5.1.2 Connection	
		3.5.1.3 Conversion of RS232 to RS485	
		35.5.2 Communication via USB	
		3.5.2.1 Conditions	
		3.5.2.1 Conditions	
		3.5.2.2 Connection	
		3.5.2.4 USB stick as data medium	
		3.5.2.4.1 Data structure and security	
		3.5.2.4.2 Change the password of the communication	
		3.5.3 Communication via analogous modem	

Manual Datafox Mobil-MasterIV

3.6

	3.5.3.1	Conditions
	3.5.3.2	Connection
	3.5.3.3	Modem initialization
	3.5.3.4	Connection via the DatafoxStudioIV
	3.5.3.5	Connection via the DFComDLL
3.5.4	Commun	nication via GSM or GPRS/GSM
	3.5.4.1	Preparation
	3.5.4.2	Configuration
	3.5.4.3	Connection state
	3.5.4.4	Send data via GPRS
3.5.5	Commun	nication via TCP/IP
	3.5.5.1	LAN
	3.5.5.2	Transition from TCP/IP to RS232
	3.5.5.3	Transition from TCP/IP to RS485 Bus
	3.5.5.4	WLAN
3.5.6	Commun	nication via RS485
3.5.7		onnection via TCP/IP
	3.5.7.1	Description
	3.5.7.2	Configuration of an active connection
	3.5.7.3	Device servicing via active connection
3.5.8	WLAN	
	3.5.8.1	General information
	3.5.8.2	Terms and explanations
		.5.8.2.1 Infrastructure Mode
		.5.8.2.2 Ad-hoc Mode
		5.8.2.3 Frequencies and ports
		5.8.2.4 Security and encryption
		.5.8.2.5 Authentification
		5.8.2.6 Passwords
	3.5.8.3	BIOS dialogue DatafoxStudioIV
	3.5.8.4	Dependencies
	3.5.8.5	WLAN configuration via the Lantronix tool 69
	3.5.8.6	WLAN configuration via the DatafoxStudioIV
		5.8.6.1 General
		5.8.6.2 Selection of the serial interface
		5.8.6.3 Selection of the configuration file
		5.8.6.4 TCP/IP settings
		5.8.6.5 WLAN settings
Access		I with TS TMR33 modules
3.6.1		
	3.6.1.1	A door without a separate reader
	3.6.1.2	A door with a separate reader
	3.6.1.3	Several external doors via RS485 bus
	3.6.1.4	Several internal doors via RS485 bus
	3.6.1.5	Mantrap function with RS485 bus
3.6.2	Connect	1
0.0.2	3.6.2.1	Wiring
	3.6.2.2	Calculation instructions
	3.6.2.3	Topologie
	3.6.2.4	Examples

$Manual\ Data fox\ Mobil-Master IV$

		3.6.2.4.1 Bus topology	87
		3.6.2.4.2 Star topology	88
		3.6.3 Configuration	90
	3.7	Timing of the digital exits for the MasterIV device series	93
	3.8	Access control II with PHG modules	95
		3.8.1 Connection	96
		3.8.2 Configuration	97
	3.9	Status message of the access control	98
	3.10		100
			101
			101
		3.11.1.1 Creating vehicle data	
		3.11.1.2 Transmission of vehicle data via Mobil-MasterIV	
		3.11.1.3 Transmission of vehicle data via Timeboy	
4	Data	nfoxStudioIV - General operation 1	103
	4.1	Installation	103
	4.2	Operation of the DatafoxStudioIV	103
	4.3	Menu Datei	104
		4.3.1 Creating a new setup file	104
		4.3.2 Open setup file	105
	4.4	Menu Setup	106
		4.4.1 Edit	106
		4.4.2 Import lists	107
		4.4.3 Import access control lists	107
		4.4.4 Configure data storage	
		4.4.5 Load firmware	
		4.4.6 Device maintenance via modem connection	
		4.4.6.1 Functions for device maintenance	
		4.4.7 Edit text data of the firmware	
	4.5	Menu Communication	
		4.5.1 Write / read setup	
		4.5.2 Load lists/ access control lists	
		4.5.3 Import and load Timeboy lists	
		4.5.4 Read, delete, display data	
			119
			120
			120
			120
			120
			122
		• •	123
			124
		4.5.12 Device configuration BIOS	
		4.5.13 Settings	
	1.6		⊥⊿ະ 191

Manual Datafox Mobil-MasterIV

5	Data	afox S tu	idioIV - Setup	132
	5.1	Basics		132
		5.1.1	Planning	132
	5.2	Function	ons of a setup	
		5.2.1	Basic settings	
		5.2.2	Global variables	
		5.2.3	Transponder	136
			5.2.3.1 Transponder reading systems	
			5.2.3.2 Function upgrading for Mifare transponders	
			5.2.3.2.1 General information	
			5.2.3.2.2 Global settings	
			5.2.3.2.3 Function normal	
			5.2.3.2.4 Transponder value write, also for Hitag1, Hitag2 and Titan	
			5.2.3.2.5 Transponder menu	
			5.2.3.3 Application possibilities for Hitag-transponder	
		5.2.4	Timeboy connection to Mobil-MasterIV	
		5.2.5	Operating modes of the Mobil-MasterIV	
		5.2.6	Creating data record descriptions	
		5.2.7	Creating list descriptions	
		0.2	5.2.7.1 Creating and importing lists	
		5.2.8	Creating a user guidance	
		0.2.0	5.2.8.1 Menu and menu items	
			5.2.8.2 Defining input chains	
			5.2.8.3 Defining input fields	
			5.2.8.3.1 Field functions in general	
			5.2.8.3.2 Field functions of the access control	
			5.2.8.4 Expanded	
			5.2.8.5 Reaction on list selection	
			5.2.8.6 Jumps	
		5.2.9	Signal processing	
		0.2.0	5.2.9.1 Use as Start/Stop	
			5.2.9.2 Use as counter	
			5.2.9.3 Use as counter with Start/Stop	
			,	166
				167
			7 1	167
			0 1	170
			·	170
				171
				171
		5 2 10	0	171
		0.2.10		171
		5 2 11		175
	5.3			176
	0.0	5.3.1		176
		0.0.1		$170 \\ 177$
				177
				178
			•	
			•	180
			5.3.1.5 Creating the lists	102

Manual Datafox Mobil-MasterIV

	5.3.1.6 Definiti	on of the device operation
	5.3.1.7 Setup t	ransmission
5.3.2	Setup for vehicle	data collection (mobile operation with switching-off) 205
	5.3.2.1 Necessa	ry hardware
	5.3.2.2 Basic se	ettings of the setup
	5.3.2.2.1	Basic settings of the Mobil-MasterIV
	5.3.2.2.2	Basic settings of the Timeboy
	5.3.2.3 Creatin	g a data record description
	5.3.2.3.1	Data record description Mobil-MasterIV
	5.3.2.3.2	Data record description of the Timeboy
	5.3.2.4 Creatin	g the lists
	5.3.2.4.1	Creating the Mobil-MasterIV lists
	5.3.2.4.2	Creating the Timeboy lists
	5.3.2.5 Definiti	on of the device operation
	5.3.2.5.1	Device operation of the Mobil-MasterIV
	5.3.2.5.2	Device operation of the Timeboy
	5.3.2.6 Setup t	ransmission
	5.3.2.6.1	Setup transmission Mobil-MasterIV
	5.3.2.6.2	Setup transmission of the Timeboy

© 2008 by Datafox GmbH

This document has been created by Datafox GmbH and is copyrighted against third parties. Datafox GmbH considers all contained information, knowledge and depictions as its sole property. All rights, including also translation, reprint or copy of the whole document or parts of it, require written consent of Datafox GmbH. The assertion of all rights in this respect is reserved to Datafox GmbH, especially in case of the grant of a patent. The handover of this documentation does not establish a claim to the licence or the use the soft- and hardware. Copies of the diskettes and CDs may only be made for the purpose of data backup. Every unauthorized copy of this documentation or the Datafox-software will be prosecuted.

1 Introduction

1.1 Updates in this document

1.2 Alterations of the version

With the device generation IV a new versioning scheme has been introduced. According to this scheme the file name of the device firmware and the setup program (DatafoxStudioIV) is composed as follows:

product name	XX.	YY.	ZZ.	Build
	device-	compatibility	version number	Build trou-
	generation	(which versions	(functional ex-	bleshooting
		can be used	tension)	(with a new ver-
		together)		sion the Build
				number is reset)
e. g. Mobil-MasterIV	04.	01.	01.	12

The use of the manual depends on the version of the firmware and the DatafoxStudioIV or the DFComDLL. Gather from the following table which manual matches which version. For different combinations no support can be offered.

version						
date	manual	firmware	Studio/DLL	description		
15. Januar 2007	4.01.03	4.01.03	4.01.03	new release		
06. Juni 2007	4.01.04.16	4.01.04.16	4.01.04.16	new release		

1.3 The device file archive (*.dfz)

1.3.1 Description

Device files (*.hex) of the MasterIV - devices are delivered in a common device file archive. It has the file extension dfz (stands for Datafox Zip). Now simply the device file archives are indicated instead of the device files (*.hex). This applies to the DatafoxStudioIV and DLL. The indication of device files (*.hex) is still possible.

1.3.2 Function of the archive

The transmission routine of the device file picks out the fitting file from the device file archive on the basis of the hardware options available in the device. Thus, it is guaranteed that all hardware components available in the device are supported by the corresponding firmware.

1.3.3 Manual selection of a file

If you do not want to integrate the archive in your installation, you have the possibility to add single device files from the archive to the installation.

The file format of the device file archive is Zip. Hence, you can open the archive with every standard Zip-program. Via the menu item "open with..." in the context menu you can chose an appropriate program

Manual Datafox Mobil-MasterIV

for opening the file. If necessary you can call up a program combined with this file format to open the file by renaming the file from dfz to zip.

In the archive you find a file called Inhalt.pdf; you can gather from there which file (*.hex) of the archive matches your device. Extract the device file (*.hex) you want and rename it if necessary. A renaming of a file is always possible, because all information are in the file itself.

You can state the device file extracted before as device file in DatafoxStudioIV and at calling the DLL function. It is still tested if the file can be loaded into the chosen device before the transmission takes place.

contextual meaning

1.4 Typography of the manual

evnosition

exposition	contextual meaning
$< \textit{Mobil-MasterIV}, \ \textit{SoftwareVersion.pdf} >$	file names
< Setup => edit >	a path via a program menu at DatafoxStudioIV
communication	a single menu item
FW	abbreviation for firmware (software in the device)
(from FW V $3.1.5$)	shows that this function is supported from the firmware version 3.1.5 onwards
SW	abbreviation for software
HW	abbreviation for hardware
(from HW V 2.0)	shows that this option is available from the hardware version 2.0 onwards
GV	abbreviation for global variable
ZK-list	abbreviation for access control lists, where the configuration data for the access control is provided
cross-reference 1.4	In the electronic document you can use the cross-references to jump within the manual. Therefore, cross-references are depicted in blue and crossing them the cursor takes the shape of a hand.

Note:

You will get useful advice which helps you to avoid possible mistakes during the installation, configuration and commissioning.

Caution:

There will be advice given you definitely have to keep to. Otherwise it will lead to defective function of the system.

1.5 Important general advice

Caution:

Use the devices only according to regulations and following the assembly, commissioning and operating instructions. Assembly and commissioning may only be carried out by authorized and qualified personnel.

Subject to technical alterations.

Caution:

Because of technical development illustrations, functional steps, technical processes and data can differ slightly.

Datafox Mobil-MasterIV has been developed to create a flexible terminal for time and attendance, order time collection and access control that can easily be integrated. The device is robust and easy to use. You save time through the PC - setup program, because the device is quickly and easily configured for its application field.

This manual describes the creation of work flows for time and attendance with the setup program.

Before deciding for the programming in C you should check if the functions of the setup program do fulfil the system requirements after all , because then the development effort will be reduced to a minimum. With some exercise it will be possible to compile a complete entry within half an hour. If you need functions that are not available we should get into contact.

If you need support at the compilation of setups we offer you our services. Because of our wide experience in dealing with the setup we are very quick and can make your setup even more efficient through useful advice, so that the entry at the device can take place quickly and reliably.

Through our experience and with our specialized knowledge of method, hard- and software we produce devices and find solutions concerning data collection, that prove themselves with functionality and practicality. We offer solutions for REFA/ job analysis, time and attendance, production data collection, machine data collection, process data collection and mobile data collection. Out team develops and produces standardized and inexpensive systems. We create solutions using the modular principle and expand them as required. Our service includes consultation, system definition and implementation as well as workshops and training to support you in the introduction.

Guarantee restriction

All data in this manual has been checked carefully. Nevertheless, errors cannot be excluded. Therefore, there cannot be given guarantee nor taken legal responsibility for consequences that derive from errors of this manual. Of course we are grateful if you point out errors to us. Subject to change because of technical improvements. Our general terms and conditions of business apply.

TEP

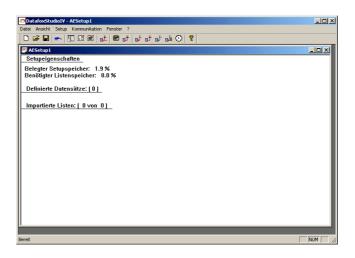
Note:

Because of the DatafoxStudioIV the Datafox devices have many functions and combination of functions; therefore, it is not possible to test all functions and their combinations in case of updates. This applies especially to all the setups you created as a customer. Before updating your device please test if your individual setup works without errors. If you detect an error contact us immediately. We will rectify the mistake at short notice.

2 System structure and functional principle

2.1 Software versions and compatibility of device firmware and setup

The firmware (operating system) of the device and the setup program (*.aes data file = application program) form a unit. With the setup program the configuration for the device (definition of the data tables and the data fields, operation, etc.) is compiled and transmitted to the device. Then the firmware works in accordance with the setup adjustments.


Firmware in device

After switching-on the current firmware version is shown on the display. The firmware can be transmitted to the device with DatafoxStudioIV.

At delivery a demo setup is at the device. The description of the demo setup you will find in chapter 5.3.1. It is advisable to go through the example at first comparing the process with the setup. That way a quick introduction to the configuration is possible.

Setup program on PC

After starting the setup program the user interface is displayed.

You can get information about the current software version via the info dialog of DatafoxStudioIV. Click on the <? > in the menu bar and then on < info over DatafoxStudioIV >..

Compatibility of firmware and DatafoxStudioIV

The DatafoxStudioIV is downward compatible within the firmware versions 4.x.xx. The second number shows the compatibility group. If this number is changed, a more up-to-date firmware generation must be used.

Note:

Devices with an older firmware can also be configured with DatafoxStudioIV, but only that functions are provided by the device which are also provided by the older firmware. However, it is impossible to configure a more up-to-date firmware version with an older DatafoxStudioIV-Version.

That means, the manual version that corresponds to the firmware with the appropriate setup is always relevant for the possible functions. The manual version and the appropriate DatafoxStudioIV always have the same index. It is impossible to configure a firmware with a DatafoxStudioIV version that is older than the firmware. Recommendation: If possible use the appropriate DatafoxStudioIV version. This version always has to be \geq the version of the firmware.

The data file:

< Mobil - Master IV, $Software Versionen\ Stand\ xxx.pdf >$ shows which functions are provided by which software release. You will find the file on the CD. Please also comply with the instructions given in the chapters of the manual.

The updates are available for download on our internet page www.datafox.de.

Caution:

When the new device is delivered always the firmware version recently released is used. If you wish to work with an older version please carry out a downgrade. Please comply with the instructions in chapter 2.2.2.

2.2 Firmware

Caution:

A firmware update or downgrade is a very sensitive process. Possibly a reset of the main communication to RS232 may occur. In any case comply with the details about the compatibility in the software version list.

2.2.1 Firmware update

Caution:

Before starting a firmware update please check on the basis of the software version list whether there are any version dependencies that must be kept.

For example, when changing from version 04.00.xx to version 04.01.xx there must be a version 04.00.23.769 or higher as minimum requirement to carry out the update to version 04.01.xx successfully.

2.2.2 Firmware downgrade

Caution:

When carrying out a firmware downgrade the firmware always has to be transmitted to the device twice. This has technical reasons. Errors on the display of the device after the first transmission can be ignored.

2.3 System structure

2.3.1 Device functions

In principle, Datafox Mobil-MasterIV offers two possibilities to create workflows for data collection.

- ▶ Via the PC-setup program "'DatafoxStudioIV"' many processes for data collection can be created quickly without programing knowledge. Such a process is a setup for the device and can be loaded on the device via the communication program. Devices using such setup programs are equipped with the standard firmware at production. (Details about the software versions see chapter 2.1)
- ▶ Free Programming in C. The progression packet offers many basis routines and a supporting program which can be used as basis for own programs. Devices for c-programming are delivered without the standard firmware and only in connection with an instruction.

2.3.2 Communication

There are 4 possibilities available for communication/ data transmission.

1.) Setup- and communication program

The setup- and communication program supports both the setting of the device settings and the important possibilities of data transmission (these data transmission functions are for test purposes primarily). Of course they can also be used for regular data transmission. But this is disadvantageous, because 2 work steps are necessary: At first you have to read out the data via the setup- and communication program and to file them as ASCII-file. Then the second program has to be opened and the file must be imported.

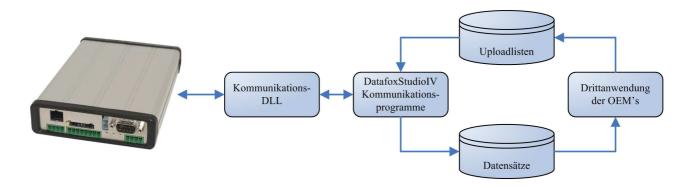


Figure 1: Setup- and Communication programm

2.) Communication DLL

The direct way for communicating with the ... is the communication DLL. It can be started with any Windows application. The whole process can be realized without any intermediate files and also be set individually. We advise software producers to choose this method for the integration of the devices. You can find the DLL and the appropriate explanation on the installing-CD.

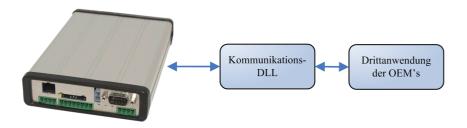


Figure 2: Communication-DLL

3.) Direct integration via C-Source code

There are some operating systems that do not support the use of DLLs. In order to solve this problem there is also a C-Source code available on the installing-CD. That way communicating with programs designed under Unix or Linux is also possible.

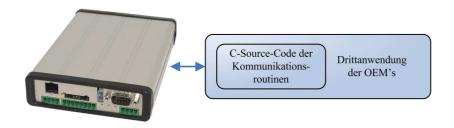


Figure 3: Implementation via C-Sourcecode

4.) Datafox-Talk

Via Datafox-Talk data transmission with Datafox AEIII+, Timeboy and the MasterIV-series is possible on file- and database layer. Therefore it is an alternative to communication via DLL. An advantage of this method is, that no installation is necessary. The data are taken over and displayed as ASCII-file. If desired and with computation a direct connection to databases is possible. There the costumer has to decide which database tables and fields shall be filled. Datafox-Talk supports all functions for transmitting data and for setting the device. Via timing the times for transmission can be set freely. Via additional modules the data can also be transmitted per radio, internet, telephone-/ mobile network.

Advantages:

- ► Via Datafox-Talk integration of the devices can be realized easily and fast.
- Transmission takes place automatically and is ensured via a log file.
- ► The data are accessible forthwith.
- There is no programming work for data transmission.

Figure 4: Datafox-Talk

Supports the following types of transmission:

- ► RS232
- ► RS485
- ► TCP/IP
- ► WLAN
- ► Funk 433 MHz
- ► Modem (GSM/GPRS)
- Cellular radio, mobile phone with integrated modem

The following actions are possible:

- ► Transmitting setup to the devices
- ► Setting a clock
- Transmitting lists to the devices
- ► Reading out of data
- Writing log files and error lists where necessary
- Filing of data as ASCII-file, Excel-file, Dbase-File or ACCESS-database

The actions are applied as batch and carried out according to the settings of the timing. Timing allows the permanent collection of data (polling) and the collection at any time. The setting via time model is very easy. The working through the actions is logged and therefore always traceable. The same applies to the transmission of lists. Lists are used e.g. to back-up applications, accounts, occupations etc. or to transmit balances.

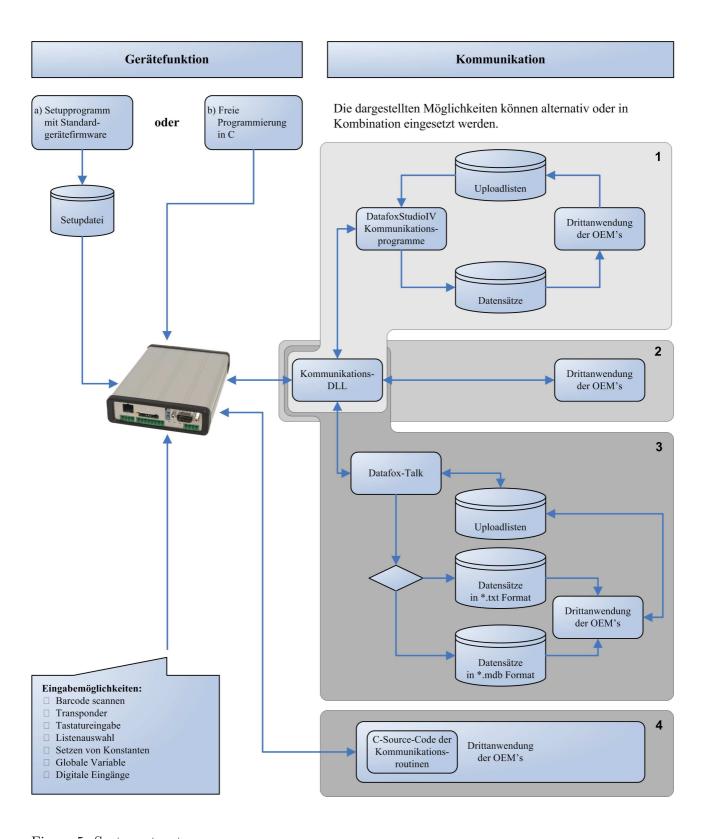


Figure 5: System structure

3 Mobil-MasterIV

Achtung:

When using the Mobil-MasterIV you have to comply with the temperature range of -20 to $+70^{\circ}$ C. For using the Mobil-Master in vehicles the following operating modes are available: "'Mobile Operation"' and "'Mobile Operation with Power Off"'. When using "'Mobile Operation"' the Mobil-MasterIV (incl. Docking station and TimeboyIII) is supplied with voltage permanently. If the vehicle does not run for a longer period of time, the battery is run down. It is better to use the power off, if no permanent supervision is necessary while standing. When using "'Mobile operation with Power Off"' the Mobil-MasterIV (incl. Docking station and TimeboyIII) can be disconnected completely via the relay 2. Reconnection is after disconnection = 0.

Caution:

Pleas keep in mind that MasterIV terminals use a flash memory. According to the manufacturer each memory sector (512 byte) can be written to a maximum of 100,000 times. The firmware of the terminals distributes the access to the memory sectors, this technique is called wear levelling. Bad blocks in case of write or read failures are not used anymore. However, despite this technique it is not advisable to write the memory too frequently. The application should initialize a new list transfer only after a change of the list data but not cyclically.

Keep in mind the message - FlashService - in the display of the device. It means that the live time of the flash memory according to the manufacturer instruction will be reached soon. Then the device has to be sent to Datafox for service.

3.1 Technical data

CPU	Controller	8 bit, 16 MHz
	Clock	real time clock
Program memory	Flash	128 Kbyte
Data memory	Flash	2 MB standard
	Memory extension	Multi-Media-Card(MMC) up to
Power supply	Power supply	24 volts of change tension or D
	Lithium battery	care of the clock with stream fa
Power consumtion	Standby = \emptyset 60 mAOperation = \emptyset 160 mA	details see page 33
Operation mode	off, stationary, mobile	off by automatic Relais $= 0 \text{ mA}$
		details see page 152
Dimensions	length x width x depth	163 x 114 x 33 mm
Weight	without power supply	400 g
Environment factors	Environment temperature	-20 to +70 °C,
		with mobile radio modem MC5
	Protection class	IP40
Software	Configuration program	Setup program for arrangement
	Communication tools	Communication-DLL
Data transfer	RS232/RS485/USB	RS232, RS485 and USB integra
	TCP-IP (option)	TCP/IP use via integrated TC
	WLAN (option)	Wireless LAN via external acce
	GSM/GPRS (option)	mobile network via GSM/GPR
	Bluetooth (option)	bluetooth module integrated up
Reader connection	RS232 external	connection from cash code read
Access options	RS485 external	connection up to 8 external
		door module/reader
	door opener-relays	2x door opener-relays 42 Volt
	digital input	2x door supervision
machine datacollection options	input	6 digital input
		($5 \times \text{start/stop}$, $1 \times \text{quick coun}$
	output	2 x relays
Optionen	GPS integrated	GPS receiver with external ante
	Transponder reader external	Unique EM4102, Hitag, Legic,
	Column	Column for free putting up

Table 1: Technical data of the Mobil-MasterIV HW-Version 2 Subject to technical alterations.

3.2 Connection

The Mobil-MasterIV (central controller for mobile data collection) is mounted e.g. in vehicles. The connections are on the two narrow sides of the Mobil-MasterIV That way the installation is easier.

Achtung: Absolutely follow!!!

The Mobil-MasterIV is a device which covers of the vehicle battery the care tension and accepts about digital entrances signals (speedometer signal, ignition on/off, ...) from the vehicle. In addition, the device disposes of a GSM/GPRS modem for the radio data transfer as well as a GPS module for the positioning by satellite. The installation in an automobile is an intervention in a foreign system which we know as a device manufacturer only partially. A manufacturer of foreign devices, how the company Datafox GmbH is in this case one, is not informed about changes by the vehicle manufacturer. Hence, we cannot guarantee that the Mobil-MasterIV does not disturb other assemblies or systems within the vehicle. Please, follow with the installation in vehicles always the installation directives and guarantee regulations of the vehicle manufacturer, so that the company permission and the vehicle guarantee does not go out. The vehicle owner must be informed in any case about the installation of the Mobil-MasterIV and be cleared up about the risks. Order the installation only by trained specialist staff of an authorised workshop or speedometer workshop.

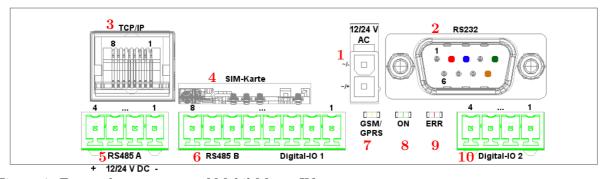


Figure 6: Front edge connector of Mobil-MasterIV

Designation	Plug	Pin	Description
Power supply	1		24 V 300 mA AC/DC (f a DC voltage is
			connected, the polarity is to be followed.)
Digitalianut	6	3	Input 5 kHz
Digital input			0 - $1 ext{ Volt } = ext{logical } 0 ext{ } (V_{ ext{ILmax}} = 1, 0 ext{ V} ext{ })$
(this are potential-free			3.5 - 30 Volt = logical 1 ($V_{ m IHmin}$ = 3.5 V)
inputs)		4	GND
	10	3	Input 10 Hz
			0 - 3 Volt = logical 0 ($V_{\rm ILmax} = 3.0 \text{ V}$)
			12-30 Volt = logical 1 ($V_{ m IHmin} = 12.0 \ m V$)
		4	GND
Digital output	6	1	common (max. 2,0 A at 42 V AC or 30 V DC)
		2	Normally-open (Contact)
	10	1	common (max. 2,0 A at 42 V AC or 30 V DC)
		2	Normally-open (Contact)
DC999 :+f	2	2	TxD
RS232 interface		3	RxD
(COM1) D-Sub 9 pole		5	GND
RS485 interface	5	1	GND
		2	Data channel A
		3	Data channel B
		4	12 V / 24 V DC
RS485 interface	6	5	GND
of the access control		6	Data channel A
		7	Data channel B
		8	12 V DC output max. 150 mA

Table 2: Overview over connection front edge connector

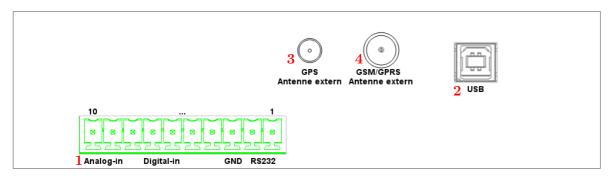


Figure 7: Edge connector backside of Mobil-MasterIV

Designation	Plug	Pin	Description
Digital input	1	5-8	Input 10 Hz
(this are potential-free			0 - 3 Volt = logical 0 ($V_{\rm ILmax} = 3.0 \text{ V}$)
inputs)			12-30 Volt = logical 1 ($V_{\mathrm{IHmin}} = 12.0 \mathrm{~V}$)
inputs)		4	GND
Analog input	1	3	GND
		9	Input (0-30 V)
		10	Input (0-30 V)
RS232	1	1	TxD
interface(COM2)		2	RxD
		3	GND

Table 3: Overview over connection, backside

Caution:

Only if the voltage source of the device is disconnected, the antennas can be connected. Otherwise no ${\rm GSM/GPRS}$ connections are made or rather no GPS coordinates are received.

3.2.1 Installing of Mobil-MasterIV for the operating mode "'Mobile Operation"'

Installing the Mobil-MasterIV in the vehicle has to be carried out only by authorized qualified personnel. The safety regulations of the motor vehicle area have to be kept strictly.

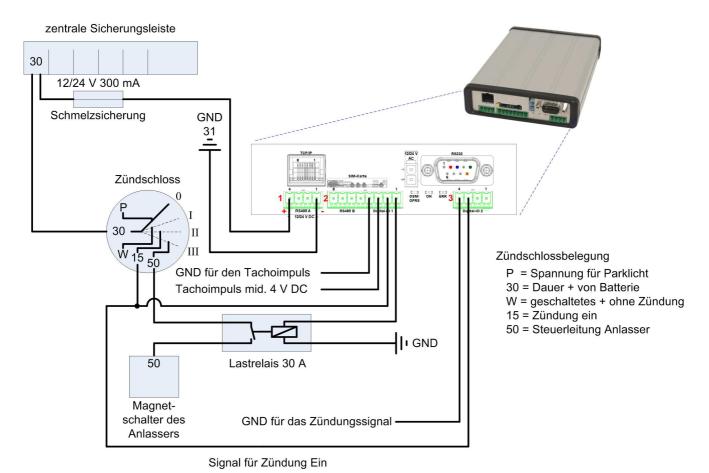


Figure 8: Circuit diagram for vehicle installation

Principle of connection:

- → Voltage supply 12/24 V continuous current
- \rightarrow Ignition On/Off min. 12 V
- → Running impulse (speedometer impulse) minimum 4 V
- ↔ Relay for starter release 12/24 V

Caution:

The vehicle Docking station is connected via the D-Sub 9-pole plug (RS232 in figure 8) of the Mobil-MasterIV So the Docking station is also supplied with the necessary voltage. Further wiring is not necessary.

3.2.2 Installation of Mobil-MasterIV for the operating mode "'Mobile operation with Power off"'

!

Caution:

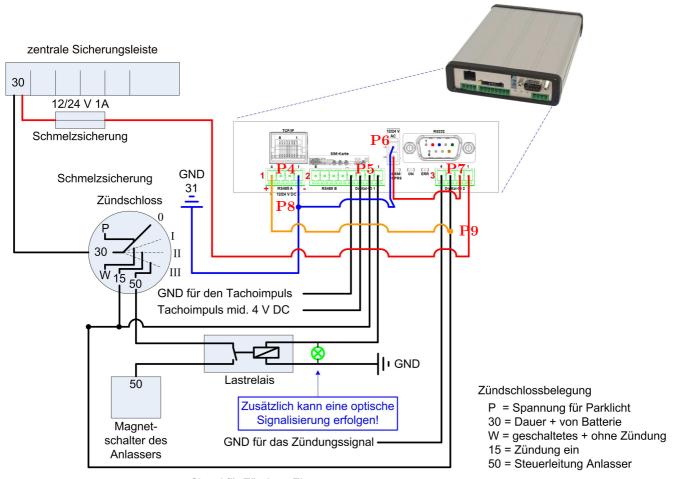
When installing the Mobil-MasterIV please note the following. Otherwise error functions or incorrect data may occur.

1.) Fastening the Mobil-MasterIV

When fastening the Mobil-MasterIV please pay attention to a tight installation so that the device is safe from vibrations. That means all collisions have to be attenuated via the chassis. Other collisions caused by an inadequate fastening can lead to a defect of the device.

2.) Fastening the vehicle docking station

The vehicle docking station should be mounted to the edge which is intended for this. In exceptional cases the three short, fastening screws of the Plexiglas cover can be replaced with long, seamless screws. When doing this, please note that the both screw heads should have the same diameter to avoid a damage of the Plexiglas cover.


3.) Wiring

Wiring has to be carried out according to the connection plan.

- ► In principle, please use only flexible cables for installations.
- If the cable diameter of a vehicle is > 0,75mm² all cables have to be laid to a luster terminal. The cables laid from this luster terminal to the Mobil-MasterIV must have a diameter of maximum 0,75mm².
- ▶ All connection cables, laid to the clips P4, P5 and P7 (in figure 9) have to be provided with ferrules, see figure 10.
- ► The Mobil-MasterIV is supplied with voltage via clip 15 from the ignition lock to the 4-pole Phoenix plug P4 (clip 4 = +; clip 1 = GND). This circuit guarantees an operation after ignition On.
- Furthermore continuous current is switched from clip 30 via clip 1 and 2 of the 4-pole Phoenix plug P7 to the Molex plug P6 through the internal relay 2 (clip 1 and 2 of P7). This circuit guarantees an operation of the device after ignition Off.
- Cable distributors are recommended for the connection spots P8 and P9 to adapt an already existing cable.
- The controlling of the internal relay 2 (backlash when ignition off) can be configured via the setup of the Mobil-MasterIV.
- There are two options for the vehicle release via the internal relay on the 4-pole Phoenix plug P5 (clip 1 and 2):
 - A power relay is used to switch the controlling voltage of the magnetic switch. Here the controlling voltage of the power relay is dragged over the internal relay 1. In this case the power relay has to be dimensioned sufficiently according to the vehicle type.
 - An automobile electrician should check whether the supply voltage of the immobilizer of the vehicle can be controlled via the internal relay 1 (relay 1 operated = immobilizer is supplied with voltage and vehicle can be started; relay 1 dropped out = immobilizer is not supplied with voltage and vehicle cannot be started).

- ► The signal "'Ignition On"' is detected via the second digital input on the 4-pole Phoenix plug **P7** (clip 3 and clip 4).
 - maximum 10 Hz
 - 0 3 V logical 0
 - 12 30 V logical 1
- ▶ The speedometer impulses are detected via the first digital input on the 8-pole Phoenix plug 6 (clip 3 and clip 4), from table 2. Please check, whether the supplied signals correspond to our specifications.
 - maximum 5 kHz
 - 0 3 V logical 0
 - 4 30 V logical 1
- The vehicle docking station is connected via the D-Sub 9-pole plug.

Signal für Zündung Ein

Figure 9: Terminal assignment

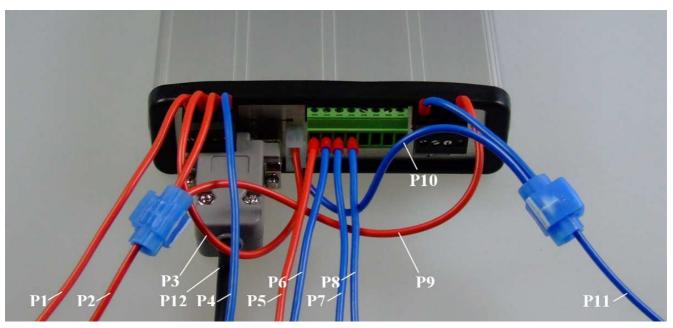


Figure 10: Wiring of Mobil-MasterIV

The colours of the cables may differ!

- ▶ P1 = Continuous current clip 30 (P1 and P3 can be exchanged, connections of the internal relay)
- ▶ **P2** = Ignition signal voltage from clip 15 (when Ignition On, digital input 2)
- ▶ **P3** = Continuous current on Molex plug (P1 and P3 can be exchanged, connections of the internal relay)
- ► P4 = GND for ignition signal (digital input 2)
- ▶ P5 = Voltage from clip 15 for controlling the power relay (P5 and P6 can be exchanged, connections of the internal relay)
- ▶ **P6** = GND for controlling voltage of the power relay (P5 and P6 can be exchanged, connections of the internal relay)
- ▶ P7 = Speedometer impulse (digital input 1)
- ▶ P8 = GND for speedometer impulse (digital input 1)
- ▶ P9 = Voltage supply from clip 15 (when Ignition On)
- ightharpoonup P10 = Vehicle GND
- ightharpoonup P11 = Vehicle GND
- ► P12 = D-Sub 9-pole for vehicle Docking station

Caution:

Maximum one cable per each clip of the Mobile-MasterIV has to be applied. Otherwise you should use luster terminals to centre several cables to one common cable (max.0, 75mm²)! Use ferrules for each cable (see figure 10).

4.) Fastening the GSM/GPS combined antenna

In principle the GSM/GPS combined antenna is intended to be used only in the interior of the vehicle. When fastening please pay attention that the marked side of the antenna (white sticker with the inscription "Face to Satellite") faces up to the direction of the satellites. The radio contact to the satellites must not be covered or rather disturbed by obstacles in the vehicle. The antenna must always have free sight to the satellites.

Pin	Name	Description
4 on plug 1 in	12/24 V	Voltage supply (continuous current) (usually clip 30 in vehicle).
figure 8	DC	
1 on plug 1 in	GND	Mass for voltage supply
figure 8		
3 on plug 2 in	DIN 1	Digital input 1 for running impulses max. 5 kHz. Caution: The
figure 8		impulse to the Mobile-MasterIV has to be positive. The
		Mobile-MasterIV cannot use negative impulses. If the speedometer
		does not supply 12 V or 24 V actively, but switches against GND
		actively and is high-impendent, a pull-up-resistance has to be
		switched between voltage supply and speedometer input (Pin 3 and
		Pin 1). This resistance should have 470 Ohm at most (voltage supply
		of 12 V). Then the speedometer has to switch an electricity of ca.
		2530 mA against mass. The resistance should have 22004700 Ohm
		(voltage supply 24 V). Then the speedometer has to switch an
		electricity of ca. 115 mA against mass. The resistances should be
		designed for 0,5 W.
3 on plug 3 in	DIN 2	Digital input 2 for ignition on/off max. 10 Hz (usually clip 15 in
figure 8	CO.T.	vehicle)
4 on plug 2	GND	GND of digital inputs 1 and 2
and 3 in		
figure 8		
1 on plug 2 in	relay 1	Relay input 1: 2 A at most with 42 V AC or 30 V DC
figure 8		
2 on plug 2 in	GND	GND for relay 1
figure 8	7.1.1	
1 on plug 3 in	Relais 2	Relay input 2: 2 A at most with 42 V AC or 30 V DC
figure 8		
2 on plug 3 in	GND	GND for relay 2
figure 8		

Table 4: Terminal assignment vehicle electricity and connection-plug of the Mobile-MasterIV

Pin	Name	Description
1 on plug 1 in	TxD	Transmit of RS232
figure 7		
2 on plug 1 in	RxD	Recive of RS232
figure 7		
3 on plug 1 in	GND	GND of RS232
figure 7		
4 on plug 1 in	GND	GND of digital input 3 to 6
figure 7		
5 to 8 on plug	DIN 3 bis 6	digital inputs 3 to 6 maximum 10 Hz available
1 in figure 7		
9 and 10 on	analog IN 1	analog inputs 1 and 2, maximum input voltage 30 V
plug 1 in	and 2	
figure 7		

Table 5: Connection-plug of Mobil-MasterIV

Caution:

GPS-receivers are very sensitive concerning interferences. Please note the following when positioning the GPS-receiver

- Mount the GPS-receiver as far at the front of the dashboard as possible. So the shielding via the roof is as low as possible.
- Position the receiver as far on the right side of the dashboard as possible. So the interferences from the vehicle electricity (primarily on the left side) are as low as possible. Place the GPS-receiver as far away from mobile phones as possible. Otherwise interferences may occur.

5.) Retrieval of system information on the TimeboyIII

On the TimeboyIII a new system variable (2 byte) is defined. The several bits of this system variable are used for the retrieval of necessary information for the Mobil-MasterIV. Each bit can have characteristics for a reading access [R] and/ or writing access [W].

The following bits [characteristics] are defined:

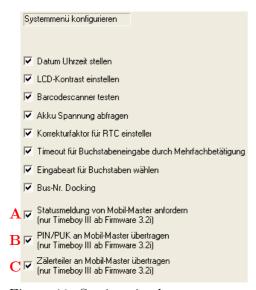
- ► Status information [R]
- ► Release [RW]
- New data available [R]
- ► New PIN [RW]

In addition to the existing command <Set operation stop>, which sets the TimeboyIII to operation stop immediately, a new reading command <Operation stop query> is defined. Via the return value the firmware of the Mobil-MasterIV is informed, whether an operation stop is possible or not. Return value <true> = operation stop possible, <false> = operation stop not possible.

3.2.2.1 Status information of Mobil-MasterIV when installing and bringing into service

In order to make installing and bringing into service easier, it is necessary to display the status information (condition of digital inputs and outputs, of analogous inputs, of meter and of GPS coordinates) on the display of the TimeboyIII. For that purpose the option "'Request status signal from Mobile-Master"' (A) can be activated in the system menu of the Timeboy.

Via a new system menu in the TimeboyIII it is possible to write a system variable. The Mobil-MasterIV polls to this system variable and analyses the appropriate bit for controlling the status information. If the bit has the value 1, a SendMessage(...) with the current status information (digital inputs, analogous inputs, ...) is sent to the TimeboyIII.


The data are scheduled with $\setminus 0$. A word-wrap within the message is indicated with $0 \times 0 D$. Horizontal and vertical scrolling as possible.

The following data are provided:

```
IN: 01 ----
                                           //Status of digital inputs 0 = low, 1 = high
CNT: (1)0
                                           // Meter reading, number of the meter in brackets
OUT:10
                                           //Status of digital outputs 0 = low, 1 = high
ANALOG: 4.3V
                                           //Status of analogous inputs
POWER: 11.0V
                                           // Voltage input on Mobil-MasterIV
GPS: A, \ldots, N, \ldots, E,
                                           // Last GPS coordinate (A = valid, V = invalid)
MOBILE: MC55, V04.00
                                           // Information about mobile communications modem
IMEI:\dots
SIM - ID : \dots
SIM:ok
MOBIL-MasterIV
                                           //Information about Mobil-MasterIV
SN: 1204
FW: 04.01.04.xx, Feb52008, 13:40:25
```

Manual Datafox Mobil-MasterIV

The system menu can be configured via the Timeboy-Setup. There you have to activate the desired options. For example the option "Set date/time" makes it possible to set the time in the Timeboy. If the Mobil-Master is the data sink, its clock is brought into line with that one of the Timeboy automatically.

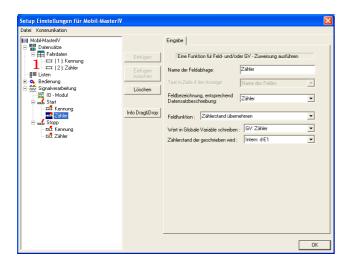
Figure 11: Settings in the system menu of the Timeboy

3.2.2.2 Alterations of PIN/PUK via TimeboyIII

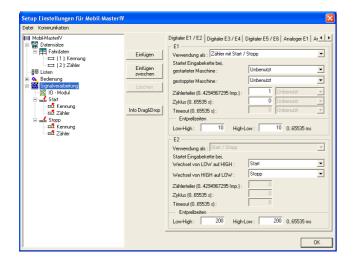
The Mobil-MasterIV is a box-device without display and keyboard. Therefore the option is necessary to enter Pin or rather PUK of the SIM card.

This can be realized by activating the option "'Transmit PIN/PUK to Mobile Master"' (B) in the system menu of the TimeboyIII. Here you have two possibilities:

- 1.) Change PIN: old PIN, new PIN, new PIN (repetition)
- 2.) Change PIN via PUK: PUK, new PIN, new PIN (repetition)


If a user forgets the PIN, but knows the PUK, he can reactivate the system (with a new PIN) via the PUK after entering an incorrect PIN three times.

At first the concurrence of the second and the third value is checked in the Mobil-MasterIV. If they are concurrent, the first value is checked against the current PIN or PUK. Only if one of these two controls is successful, the new PIN is taken over. Then a feedback is displayed on the Timeboy.


3.2.2.3 Calibration tour

You have to use an appropriate setup for the calibration tour. If there are still any problems with creating setups, please read chapter 5.3. An example for a calibration tour setup could look as follows:

Create a data record description (1) with two fields, named "'Identification"' and "'Meter"'. Now create two input chains with two fields each (Field 1 = Identification, Field 2 = Meter) under the signal processing, with appropriate assignment of data record description and field description. Assign an appropriate value (e.g. Start/Stop) to the field "'Identification"' via the function "'Constant"'. Assign the internal value "'dE-1"' to the field "'Meter"' via the field function "'Take over meter reading"'.

Figure 12: Settings of the input chains for the calibration tour

Open the register card "'Digital E1/ E2"' in the area of the signal processing and assign "'Counter with Start/ Stop"' under "'Use"'. It is important to set the counter splitter to "'1"' to record the real counting impulses. Set the cycle to "'0"' and the debounce times to "'10"'. Assign the input chain "'Start"' for "'LOW auf HIGH"' and the input chain "'Stop"' for "'HIGH auf LOW"' for "'E2"'. The debounce time is "'200"'.

Figure 13: Settings of signal proceeding for calibration tour

After installing the Mobil-MasterIV in the vehicle you have to connect your Timeboy to it via Docking station. Read out the status information of the Mobil-MasterIV with the help of the Timeboy and note the meter reading!

Now move exactly 1km with the special setup and switch off the ignition then.

There are two possibilities to read out the meter reading.

- from the created data records (Start = initial state & Stop = final state of the meter)
- read out with the help of the Timeboy (more elegant variant)

Now you have an initial and a final value of the meter. Example:

Initial value = $1850 \ Impulse$ Final value $(nach \ 1 \ km) = 11300 \ Impulse$

Difference = $11300 - 1850 = 9450 \ Impulse/1km$

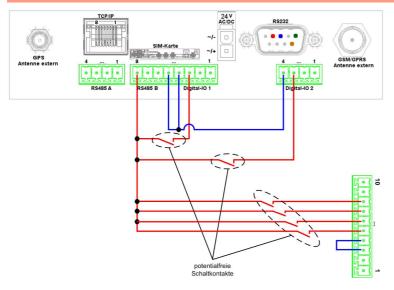
Now we know how many impulses come up to one kilometre. If we want to get a data record each 5km with a vehicle setup, we need to set a counter splitter of "'47250"' (9450 x 5). You can realize this via the option "'Transmit counter splitter to Mobile Master"' (\mathbb{C}).

3.2.3 Power supply

The power supply (12 - 24 V AC/DC) is connected via the Molex connector, position (1) in figure 6. Please note chapter 3.2.2 in deviation to this.

3.2.4 Digital Input

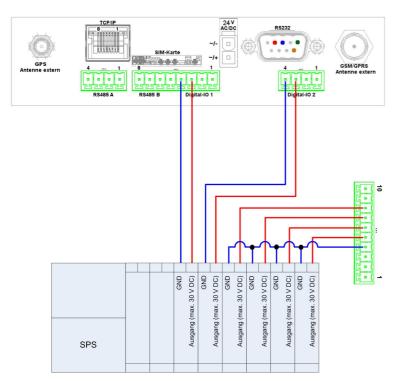
Examples for use the digital Input of the MasterIV terminals.


Note:

Pleas keep in mind, the 10-pole plug in the two figures below is not available by every device.

Achtung:

Note in any case to proper ones Signals.



for connection of potential-free contact to the digital input.

This example displays the possibility

Figure 14: Digital-Input potential-free

This example displays the possibility for connection of a SPS with 24 V output (electricity of ca. 7 mA / port).

Figure 15: Digital-Input SPS

3.2.5 USB connector

The USB Type B connector (slave, **no** active USB controller) can optionally be led out of the device by a USB cable through the edge connector. By this, the Mobil-MasterIV can be connected to a PC as USB terminal.

3.2.6 Ethernet interface

!

Caution:

Power over Ethernet (PoE) describes a process with which network-compatible devices can be energised via the 8-core Ethernet-wire. The internal TCP/IP module of the Mobil-MasterIV is not PoE tolerant.

The device can be integrated into a network of companies via TCP/IP via the RJ45 plug (3) in figure 6.

3.2.7 Mobile communications modem

At position (4) at figure 6 is the SIM card slot for an integrated mobile communications modem. An external mobile aerial can be connected via the antenna socket (4) at figure 7.

3.2.8 GPS coordinates

The GPS coordinates of the Mobil-MasterIV can be established in GPRMC format via the GPS module. The external GPS aerial is connected via the antenna socket (3) at figure 7. WGS84 is used as system form which the maps are obtained.

Caution:

In order to get valid GPS coordinates it is necessary that the active GPS aerial has a free view to the satellite (this should be taken literally). This has to be noticed when placing the aerial in a vehicle (e.g. on the dashboard).

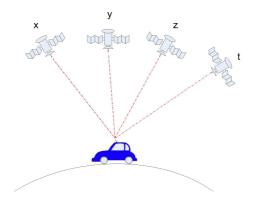


Figure 16: Mobil-MasterIV

3.2.8.1 GPS data record structure

As GPS data information are provided according to the NMEA standard as GPRMC data record (GP is the device-ID and means Global Positioning System; RMC = Recommended minimum specific GPS/Transit data). The GPRMC data record consists of the following fields in the given order:

- ⇒ UTC time of the positioning (fixed format: hhmmss)
- \Rightarrow Validity (warning of the recipient: A = data OK; V = warning)
- ⇒ Northern latitude (format: DD MM.MMM; this is the decimal minute format)
- ⇒ Eastern longitude (format: DD MM.MMM)
- ⇒ Ground speed (in knots)
- ⇒ Real course (without movement)
- ⇒ UTC date of the positioning (fixed format: dd.mm.yy)
- ⇒ Magnetic declination
- \Rightarrow GPS mode (only from NMEA version 2.3 on; format: A = autonomous, D = differential, E = estimated, N = not valid, S = simulator)
- ⇒ Check sum

The GPS module provides GPS data one time per second. If signals are captured via the digital inputs of the PZE-MasterIV, it can occur that more than one data record is generated within a second (e.g. 3 data records within half a second). When the GPS coordinates are processed in each of the three data records, no new information are available from the GPS module after the first data record and the same data from the first data record is processed again. In this case a sign (;) at the end of the data record marks it as a repetition.

Further information can be obtained from the first sign, the fixed length of the GPS data of 27 Byte RMC. The following signs are possible: B = booting, D = GPS module disconnected, T = timeout.

3.3 Commissioning

On delivery the device is already in working order and configured with a demo setup so that you immediately can test the input. After having plugged in the power supply unit the device will switch on automatically. The Mobil-MasterIV automatically starts booting, recognition of the hardware options and loading the setups.

After having finished booting the device automatically switches to the operating mode (8) in figure 6 is "'ON"' (9) is "'OFF". Now the Mobil-MasterIV is ready for use. Only use power supply units with appropriate power to establish the power supply (see chapter 3.2.3).

On delivery the device is set for a communication via RS232 with 38400 Baud. Because the Mobil-MasterIV has no display, changes that concern the device bios - which includes the change of the communication - can only be made via the DatafoxStudioIV. You can find further descriptions in chapter 4.5.12.

Note:

Before changing the communications read the corresponding paragraph in chapter 3.5.

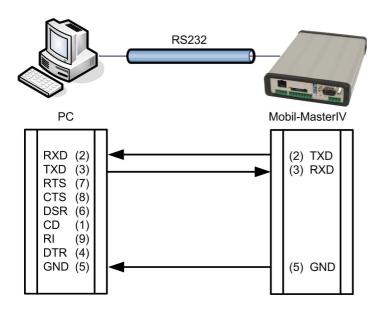
3.4 Operation

General guidelines for the operation

Because the Mobil-MasterIV has no display, all changes of the configuration of the device can only be made via a PC with the help of the DatafoxStudioIV. You can find a more detailed description in chapter 4.5.12.

3.5 Communications

The Mobil-MasterIV has different interfaces for communication (dependent on features and hardware version). Thus, peripheral (e.g. speedometer impulse or relais) can be connected to the device or a communication with the device is possible. Because the device has no display, all configurations have to be made via the DatafoxStudioIV, see chapter 4.5.12. For this purpose the device has to be connected to a PC.


3.5.1 Communication via RS232

3.5.1.1 Requirement

For a communication with a Mobil-MasterIV over an RS-232 connection, the device has to be set for this communication in the system menu-BIOS (see chapter 4.5.12). Furthermore, baud rate and timeout of the RS232-interface of the terminal and the PC must be coordinated. Permitted baud rates are 9600, 19200 and 38400. The timeouts have to be between ≥ 100 and ≤ 2000 . When you select RS232 for communication the timeout is set on 100 by default.

3.5.1.2 Connection

A single device can be connected to the PC directly via the RS232-interface (position 1 in figure 6 and 7). The cable must not be longer than 15 m. Use a RS232 cable with a 1:1 configuration, corresponding to Datafox item no. 20010, as connecting cable.

Figure 17: Connection of the Mobil-MasterIV with the PC about RS232

3.5.1.3 Conversion of RS232 to RS485

Up to 31 devices can be connected to a serial interface of a PC or server via a RS232-to-RS485 converter. In this case the devices are connected via a RS485 bus. The power supply can be established using a central power supply unit with adequate power. Note that the fall of voltage is dependent on wire cross-section and length.

The pin assignment of the converter will be demonstrated using the Datafox converter RS232/485 (small) as example. Gather the wiring of the RS485 bus from the following examples.

Caution:

Pay attention to the hardware version given in the examples. It is a precondition for the prevailing example.

Connect the converter to the PC with a Sub-D 9-pole 1:1 cable as shown in figure 17. The converter replaces the Mobil-MasterIV.

PIN 1/4 in figure 19 are supply entries which make a power supply of the device via the bus possible.

Caution:

If the power supply of the Mobil-MasterIV and the RS485 bus is established via PIN 7/8 (RJ45 connection of the Mobil-MasterIV in figure 14) or PIN 1/4 (male connector of the Mobil-MasterIV in figure 19) direct voltage must be used (see chapter 3.2.3). direct voltage must be used.

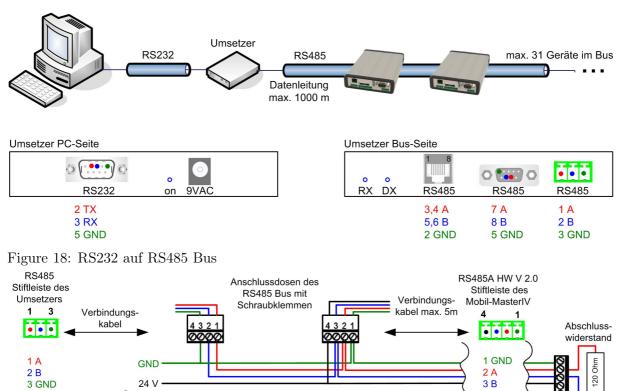


Figure 19: RS485 Bus über Stiftleisten (RS485A HW V 2.0)

3.5.2 Communication via USB

3 GND

Note:

24 V

Spannungs-

versorgung

Note that the USB-interface of the Mobil-MasterIV is an USB type B. That means the Mobil-MasterIV works in slave mode and therefore cannot manage other USBdevices.

4 24 V

3.5.2.1 Conditions

You have to install the USB device drivers and the USB serial converter drivers that are necessary to communicate via USB.

Caution:

Only use the drivers provided with the device!

3.5.2.2 Connection

The Mobil-MasterIV is connected to the PC via a standard USB cable A-B.

3.5.2.3 Driver installation

After connecting the Mobil-MasterIV to the PC, the terminal is recognized as new USB device and the installation of the provided USB drivers starts.

Figure 20: Automatic start of the setup assistant

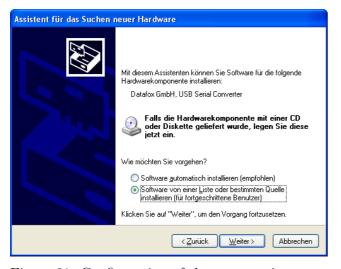
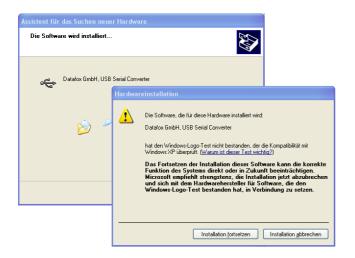


Figure 21: Configuration of the setup assistant


The next step is to set that you want to install the driver from a certain source.

Select the folder of the driver file.

Figure 22: Selection of the source directory

Installation of the driver for the Datafox USB serial converter. The driver has no Microsoft logo, therefore the pictured message will be shown. Click on "'Continue installation"' to use the driver.

Figure 23: Datafox USB Converter

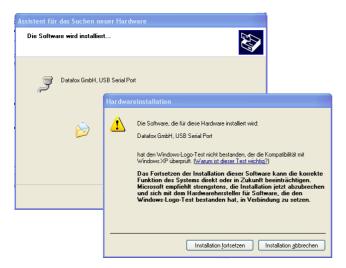
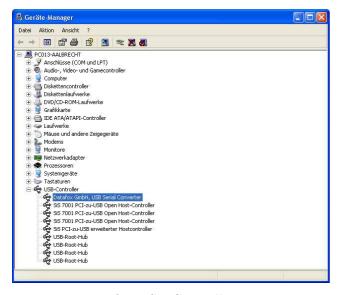


Figure 24: Virtual COM Port


Driver installation for the virtual COM port. During this installation you will again get the message that the driver did not pass the Microsoft logo test. Click again on "'Continue installation"' to use the driver.

The driver installation is finished.

Figure 25: Driver installation finished

You can check the successful USB driver installation in the Device Manager. There have to be the following entries without a yellow exclamation mark.

Figure 26: Datafox USB Controller

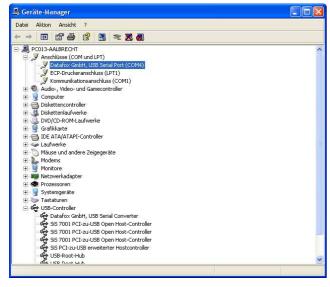
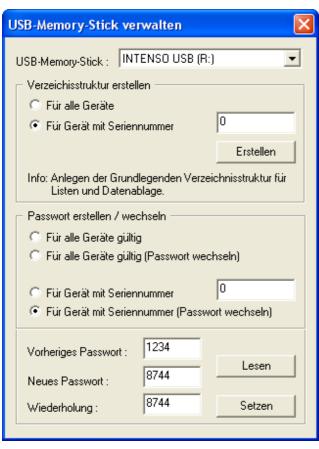


Figure 27: Datafox USB Serial Port

The entry for the Datafox USB Serial Port is added as well. Via this COM-Port you can establish a connection to the Mobil-MasterIV with the DatafoxStudioIV or with your own application via the DFComDLL.dll.

3.5.2.4 USB stick as data medium

In addition to the main communication USB, it is possible to use an USB stick as data medium. That way you can read out data records from a Mobil-MasterIV and continue processing on a PC or create lists the for master data or the access control.


3.5.2.4.1 Data structure and security

In order to guarantee the data transfer between the terminal and the USB stick, you have to create a directory structure on the USB stick at first. Please use the following application for this: USBMemory-Stick.exe or DatafoxStudioIV.

Please plug an empty USB stick in the USB port of your PC before starting the program. Now start the application, mentioned above, and carry out the following steps.

In the steps 1 to 5 the data structure and the password are logged on the USB stick. With it all USB terminals are operated, irrespective of their serial number.

1. Select the drive, that was allocated to the USB stick.

- 2. Create the directory structure for all devices, irrespective of their serial numbers.
- 3. Create a password, that is valid for all devices. The correct password is the basis of a data transfer between the terminal and the USB stick. Thus you avoid, that any USB stick with the created data structure can read the data out of the device.
- 4. Log the password, e.g. 1234.
- **5.** Set the password to the USB.

Figure 28: Configuration of an USB stick

A new directory structure COMMON, that is used as filing for the transfer data, was created on the USB stick.

Create the interface folder ACCESS for the access control lists, that are to be transmitted to the terminal. The lists have to be logged as *.txt file.

The folder DATA contains the data records (as *.txt file), that were recorded from the terminal on the USB stick.

In the folder KEY the key (as *.dat file) is logged, that allows a communication between the terminal and the USB stick. If no password was created, the file remains empty.

All lists (as *.txt file), that are to be transmitted to the terminal, are filed in the LIST folder.

Figure 29: File structure on the USB stick

The filing structure COMMON on the USB stick is used by all terminals, that support a main communication via USB. All *.txt files, that are filed on the USB stick, have to correspond to the list descriptions in the setup (in designation*, field size and format). Carry out a tabulator as field separator and CR + LF at the end of line.

*The designations of the text files (lists or data) can only be selected in the format 8 dot 3. That means, that each text file has to be unique on the basis of its first 8 digits. If the list descriptions are not unique

within the first 8 digits, a termination of the communication may occur. No lists are transmitted to the terminal then.

If you want to transmit data and lists terminal oriented, you have to log an additional data structure in the following steps. The selection is based on the serial number of the terminal.

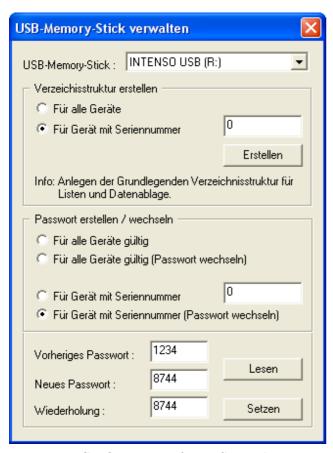
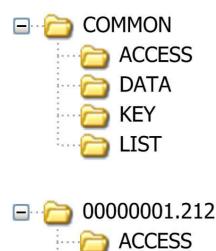



Figure 30: Configuration of an USB stick

- **6.** Select the drive, that was allocated to the USB stick.
- 7. Create the directory structure for a terminal with the proper serial number.
- 8. Create a password, that is only valid for the terminal with the logged serial number (e.g. 1212). The correct password is the basis of a data transfer with this terminal. That way you avoid, that any USB stick with the created data structure can read the data out of the device.
- **9.** Log the password, that shall be logged for this terminal only, e.g. 4455.
- 10. Set the password to the USB stick.

The already existing data structure (created in the first step) is used for all terminals, irrespective of the serial number.

Next, an additional directory structure only for the terminal with the serial number 1212 is created on the USB stick.

Interface folder for the access control lists, that are to be transmitted to the terminal (1212). The lists have to be logged as *.txt file.

The data folder contains the data records (as *.txt file), that are to be written from the terminal (1212) on the USB stick.

The key (as *.dat file) is logged on the KEY folder. It allows the communication between the terminal (1212) and the USB stick. If no password was created, the folder remains empty.

All lists (as *.txt file), that are to be transmitted to the terminal (1212), are logged on the list folder.

Figure 31: Filestruktur auf USB Stick

LIST

When communicating with the terminal (1212), the terminal only accesses to the directory structure created for that purpose. Thus, no transfer with the general directory COMMON takes place. An own directory structure can be created for each terminal.

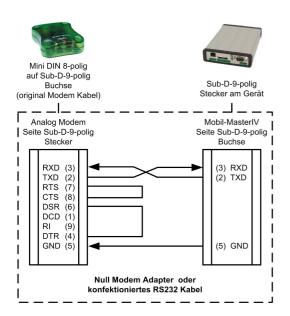
When plugging the USB stick in the terminal for the first time, the setting and the logged password is recorded on the terminal. From this moment on, communicating is only possible, if the the correct password was entered.

Caution:

Note: This USB stick should only be used for the communication and the data transfer of terminal and PC. Data and folder structures, that are not related to the data transfer, might cause negative effects concerning the writing of data on the USB stick. A termination of communication with the USB stick may occur and data records may be damaged.

3.5.2.4.2 Change the password of the communication

In order to change an already existing password on the USB stick and on the terminal, you have to use the same application, you already used for creating the directory structure.

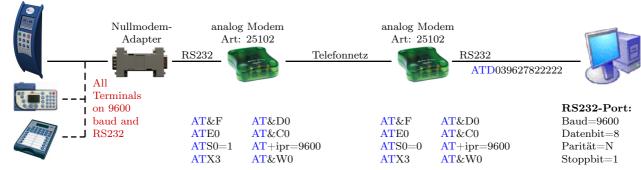


3.5.3 Communication via analogous modem

3.5.3.1 Conditions

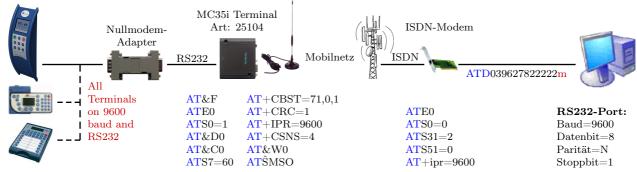
For a communication via analogous modem, you have to set RS232 as communication in the system menu-BIOS of the Mobil-MasterIV (see chapter 4.5.12). The baud rate of the terminal and the connected modem must be coordinated. The timeout must be set dependent on the line quality of the telephone network (Which disturbance sources the cable is exposed to?). The worse the line quality the higher the timeout should be set. The modem to which the terminal is to be connected has to be configured via the COM-interface of a PC. The steps listed below refer to the tested and recommended "'Devolo-MicroLink 56k Fun II"' modem.

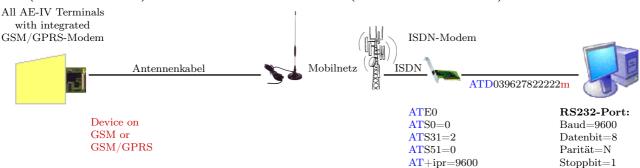
3.5.3.2 Connection


The analogous modem is connected to the COM-interface of the PZE-MasterIV. Use a Null-modem-adaptor or another cable that is assembled corresponding to the figure.

Note that at the site of the Mobil-MasterIV **no** connections are bridged. You can use a Sub-D 9-pole 1:1 cable as an extension between the Null modem adaptor and the terminal.

Figure 32: Connection of the analogous modem to the Mobil-MasterIV


Analogous modem to analogous modem (Wiring of the Null modem adaptor see figure 33)


Mobile communications modem to mobile communications modem (Wiring of the Null modem adaptor see figure 33)

ISDN (terrestrial network) to mobile communications modem (Wiring of the Null modem adaptor see figure 33)

ISDN (terrestrial network) to mobile communications modem (internal MC35i or MC55)

Note:

The configurations mentioned above are no guarantee for a connection. They are just based on experience and maybe have to be set to the different telephone systems. Configurations that are not listed here usually do not work.

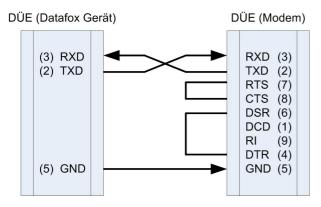


Figure 33: Wiring of the Null modem adaptor

Pin	Designation	Importance	
1	DCD data carrier detect	Träger erkannt	
2	RxD receive data	Empfangsdaten	
3	TxD transmit data	Sendedaten	
4	DTR data terminal ready	DEE empfangsbereit	
5	GND ground	Signalmasse	
6	DSR data set ready	Betriebsbereitschaft	
7	RTS request to send	Sendeanforderung	
8	CTS clear to send	Sendebereitschaft	
9	RI ring indicator	Ankommender Ruf	

Table 6: PIN Belegung und Kennzeichnung

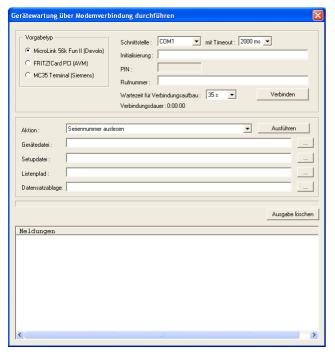
Abbrevia-	Description
tion	
DCD	It becomes active when the connected modem has contacted another modem.
	It indicates the PC that a connection is established and data can be sent.
DTR	The computer signals his ready status, e.g. at a direct connection.
DSR	As response to DTR (at crossed lines.)
RTS	Becomes active when the terminal is ready to send data.
CTS	Becomes active when the terminal is ready to receive data.
RI	Is produced by a connected modem when a ring comes in.

Table 7: Description of the identifiers of the Sub-d-9-pole

Output:

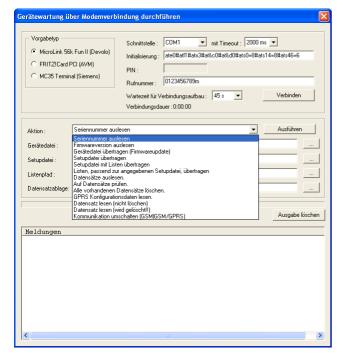
 $\begin{aligned} & Low\text{-Pegel} = +\ 12V \\ & High\text{-Pegel} = -\ 12V \end{aligned}$

Output current: up to 10 mA


Input:

Low-Pegel is recognized till ca. + 1V High-Pegel is recognized from ca. + 1V Driving point impedance = 10 kOhm

3.5.3.3 Modem initialization


Check on which baud rate the Mobil-MasterIV is set. You can find this information in the system menu-BIOS (see chapter 4.5.12).

Connect the "'Devolo-MicroLink"' to the COM-interface at your PC. Start the DatafoxStudioIV and open the modem configuration dialogue via < setup => device maintenance via modem connection >. Select "'MicroLink 56k Fun II (Devolo)"' as type and set a COM-interface of your PC out. Set the timeout on "'2000 ms"'.

Figure 34: Configuration of the modem connection

3.5.3.4 Connection via the DatafoxStudioIV

Open the communication dialogue via the DatafoxStudioIV menu item < setup- > device maintenance via modem connection > to establish a connection between a Mobil-MasterIV and a PC (DatafoxStudioIV). In dependence on the selected modem type you additionally have to set the COM-interface, baud rate, PIN and phone number of the remote station. Parameters that are not needed are deactivated.

This kind of communication is used at the administration of the Mobil-MasterIV ("'device maintenance via modem connection"'). For this purpose different functions are available.

You can find further descriptions in chapter 4.4.6.

Figure 35: Dialogue for device maintenance via modem connection

3.5.3.5 Connection via the DFComDLL

You can also start the connection to the Mobil-MasterIV from your own application. Use the functions of the DFComDLL.dll to establish a connection between a PC and the device. Proceed as it is shown in the figure below.

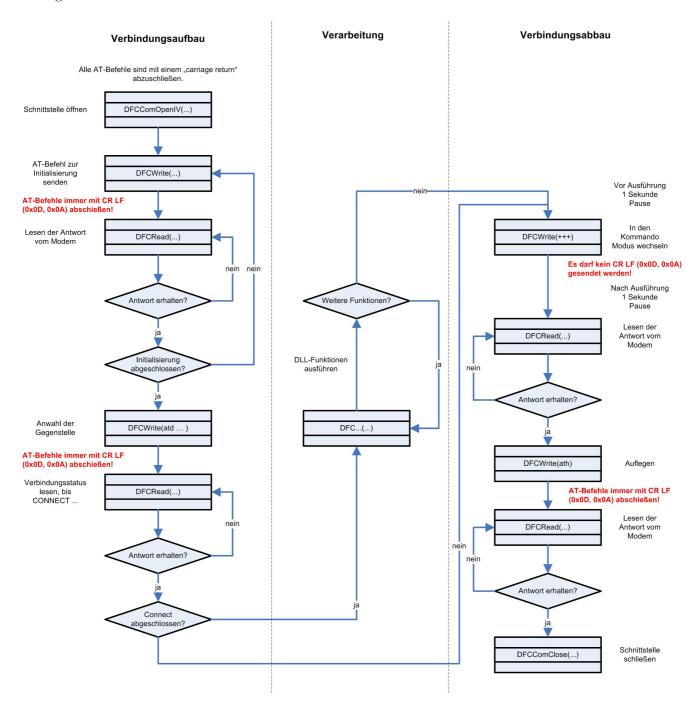


Figure 36: Course of the communication via DFComDLL.dll

You can find a more detailed description of the functions and parameters in the documentation or help to the DFComDLL.dll.

3.5.4 Communication via GSM or GPRS/GSM

The Mobil-MasterIV can optionally be equipped with a mobile communications module (Siemens MC35i, MC39 or MC55) for GSM and GPRS to use it at locations without fixed or DSL network.

Caution:

GSM and GPRS are services that generate costs. Contact your provider to get further information about tariffs and generated costs.

Via GSM all functions of the DLL can be used. Currently, GPRS is used only to send data from the Mobil-MasterIV to a web server. The advantage is that the data is sent immediately.

3.5.4.1 Preparation

Put the SIM-card in the Mobil-MasterIV before bringing the device into service. An external aerial has possibly to be connected; this depends on the selected hardware option (internal or external aerial). See chapter 3.2.7. In the BIOS of the Mobil-MasterIV "'GSM"' or "'GPRS/GSM"' has to be activated as interface (see chapter 4.5.12).

3.5.4.2 Configuration

Caution:

Starting from version 04.01.06 the internal TCP/IP stack of the modem is used. An existing GPRS radio connection is cut when no data is send for a period of 20 seconds after the last HTTP communication. With the next data the modem dials in again. This can cause higher communication costs, especially with low volume rates. This timeout is increased from 20 seconds to 8 hours from version 04.01.06.16.

You have to create a configuration file with the access data of your provider and transmit it to the device to use "'GPRS/GSM"'. See chapter 4.5.11 for further descriptions of the parameters, the creation and the transmission to the device.

Note:

Note that the GPRS configuration files can be transmitted to the device only with the DatafoxStudioIV via RS232 or TCP/IP.

A communication via GPRS requires "'GSM"', therefore a SIM-card has to be put in the device (see chapter 3.2.7). For the SIM-card activation in the Mobil-MasterIV the following scenarios are possible:

- 1.) You want to switch from another communication to a communication via "'GSM"' or "'GSM/GPRS"'. Remove the device from the power supply and display the SIM-card. Go to the bios modus via the DatafoxStudioIV and set the interface at "'GSM"' or "'GSM/GPRS"'. Transmit the changed bios configuration to the terminal and leave the bios modus.
- 2.) You want to switch from another communication to a communication via "'GSM"' or "'GSM/GPRS"'. Remove the device from the power supply and display the SIM-card. Go to the bios modus via the

DatafoxStudioIV and set the interface at "'GSM"' or "'GSM/GPRS"'. Transmit the changed bios configuration to the terminal and leave the bios modus.

•

Caution:

If a wrong PIN was transmitted to the device three times, the PUK has to be entered together with the PIN to activate the SIM.

3.5.4.3 Connection state

After transmitting the .ini'-file to the device the operating mode of the Mobil-MasterIV can be set to "'GSM/GPRS"', see chapter 4.5.12.

GSM: The communication takes place via GSM.

GPRS/GSM: The data records created in the device are sent immediately to a corresponding web

server via GPRS. All other functions have to be carried out via GSM.

The GSM state is shown via the state LEDs at the Mobil-MasterIV (valid from version 04.01.01.21 on):

ERROR	POWER	$\mathbf{GSM}/\mathbf{GPRS}$	State of the device	
On	On	Off	Bootloader	
On	On	On	Start	
Off	$1~\mathrm{Hz}$	Off	Booten	
1 Hz	$1~\mathrm{Hz}$	-	No setup	
1 Hz	On	-	Stopping of control mode	
Off	On	-	Normal operation	
Off	&	-	Communication active	
Off	-	Off	Mobile, offline, not in the net	
Off	-	*	Mobile, offline, enrolled in the net	
Off	-	On	Mobile, online	
$2~\mathrm{Hz}$	-	*-	Mobile, no SIM-card	
$2~\mathrm{Hz}$	-	**-	Mobile, PIN is required	
$2~\mathrm{Hz}$	-	***-	Mobile, PUK is required	
2 Hz - *~		*~	Mobile, other errors	

Legende

-	LED - condition undefined
Off	LED off
On	LED on
1 Hz	LED flushes once per second
2 Hz	LED flushes twice per second
&	LED turns off for about 30 ms
*	LED turns on for about 150 ms
~	LED turns off for about 150 ms
_	LED turns off for about 1000 ms
	LED turns off for about 2500 ms

3.5.4.4 Send data via GPRS

The Mobil-MasterIV can send booking data promptly to a web server via GPRS. For this it is necessary to configure the device for this communication as described above. When data is created in the Mobil-MasterIV, firstly a TCP/IP connection is established and then the following character string is sent:

Caution:

Currently, no blanks or umlauts can be transmitted via GPRS. This problem is known and dealt with.

GET example/getdata.php?table=datensatz¶meter1=wert1¶meter2=wert2&checksum=pruefsumme

- ► GETexample/getdata.php? is the prefix of the HTTP data and gives the path on the web-server where the php-script is with which the HTTP data are processed.
- Table is a data record description from the setup (the table from which data are to be transmitted).
- \triangleright Parameter n describes the field names from the data record description (table field).
- Checksum is to detect errors at the data transmission

You should enter only a few characters for the tables and field names to have a small transmission volume.

The checksum is the sum of all ASCII values of the transmitted parameter values (only of the values, not of the filed name; that means everything that is written between = and &). The web-server has to send back the following answer within HTTPTIMEOUT:

- 1.) Success (checksum correct): status=ok&checksum=pruefsumme Then the data record is deleted in the Mobil-MasterIV.
- 2.) Error (checksum incorrect): status=error&checksum=pruefsumme Then the last data record is sent again.

•

Caution:

Every answer string from the server has to end with 0x0D 0x0A.

As fixed parameters it has to be given:

"'status=ok&checksum="' or "'status=error&checksum="'

The following optional parameters are allowed:

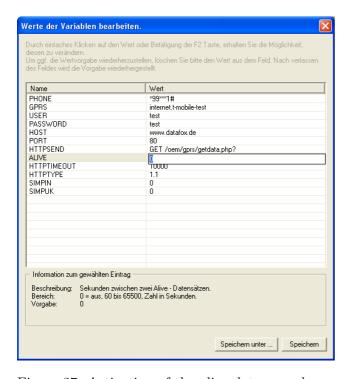
"'&time="' the timestamp of the server is passed

"'&message="' a message is passed to display it

"'&delay="' sets how long a message is displayed

"'&beep="' sets the kind of signal 0 = none, $1 = 1 \times \text{long}$, $2 = 2 \times \text{long}$,

3 = 1 x short, 4 = 2 x short and 5 = 3 x short


If you want to adjust date and time of the Mobil-MasterIV and the server, you can do it in the answer to the Mobil-MasterIV as in the following example:

status=ok&checksum=3142&time=2003-10-28 17:00:55

Now the Mobil-MasterIV sets its internal clock on 17:00:55 and the date on 28 Oct 2003.

If connection problems occur, the error analysis can be simplified with the help of an alive-data record. Via the alive-data record you can detect if the device was on- or off-line, e.g. at the moment of power outage. You also can detect if the web-server was reachable all the time with the aid of the alive-counter in the alive-data record. With each failed attempt to send data the alive-counter increases. If no data reach the server and the alive-counter in the alive-data record has the value 1, the device has been removed from the power supply.

Activation of the function Alive via the parameter "'Alive"' (cycle for the creation of the alive-data record in seconds) with a value higher than 60 and lower than 65500.

The data fields of the alive-data record you should define in any case are the device number, date and time and the alive-counter.

The value of the alive-counter * cycle for the creation = duration of interference. With this formula you can calculate the duration of interference via the alive-counter.

Figure 37: Activation of the alive-data record

Note:

After three failed attempts to send data, the Mobil-MasterIV starts the device regeneration with a timeout of 15 minutes. When the timeout is run out three attempts to send the data are started again. Thus, the generation of unnecessary costs is prevented.

Caution:

Alive data are temporary data. If the alive-data record cannot be sent (e.g. server is nor reachable), it will be deleted and the alive-counter will be increased by one. The function "'alive"' is activated via the alive parameter in the GPRS.ini. Additionally to the activation the F6-chain or (from version 04.01.04.x on) or the GPRS-chain has to be available in the signal processing. Take care that this function does not create unintentional data (trafic).

3.5.5 Communication via TCP/IP

Usually, the configuration of the network connection is necessary to integrate a Mobil-MasterIV. But if a DHCP server, that supplies all PCs and peripheral with dynamic IPs, is available in the network, this configuration can be omitted. In this case the IP of the terminal has to be set on "'000.000.000.000.000".

- version fixed value
- ► MAC fixed value
- ► **IP** changeable value
- **port** changeable value, analogous IP
- ► hostbits changeable value, analogous IP
- **gateway** changeable value, analogous IP
- remoteaccess changeable value you have the choice between yes and no.
- **set default** the default values of the device are set

A possible access protection per Telnet or web interface to the TCP/IP module of the Datafox terminal is deactivated after a restart of the device.

Starting from version 04.01.06.16 the following security mechanisms are available:

Variant 1 A complete protection of the terminal against remote access (Telnet-session, web interface) is possible by deactivating remote access in the BIOS of the device. Then TCP/IP settings are only available at the terminal itself.

The settings for the remote access (yes / no) in the BIOS can only be changed if the BIOS is protected by a password. This means that after a firmware update it is necessary to transfer a setup with a BIOS password before the settings can be changed.

This additional protection is necessary because a change of this setting (remote access yes/no) deactivates a probably set Telnet password.

Variant 2 In a Telnet session you must set the value for "Enable Enhanced Password" to y (yes) in menu 6. Also set the value for "Change the password" to y (yes) and enter the password. Save these changes at menu item 9, Save and Exit. With these settings you have protected the access per Telnet as well as per web interface with a single password. With this variant you can still change the settings per remote access.

Caution:

Important! A change of the setting remote access in the BIOS of the device deactivates the Telnet Enhanced password. This can be desired if you forget the password and want to reset the terminal. To do so you need the BIOS password which can be found in the devices setup.

A firmware update has no influence on the security settings of the terminal!

3.5.5.1 LAN

Analogous to the direct connection via RS232 a single device can be connected directly to the PC via TCP/IP. In this case the device is connected to the PC with a CAT-5 network cable (in case of direct connection with crossover; in case of connection via router,... with patch cable) via the RJ45 jack.

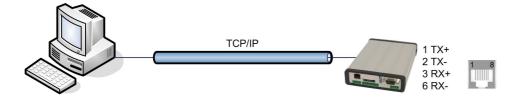


Figure 38: Connection to the PC via TCP/IP

3.5.5.2 Transition from TCP/IP to RS232

In order to connect a single device via RS232 to a TCP/IP network a COM-server has to be used. The COM-server serves as converter.

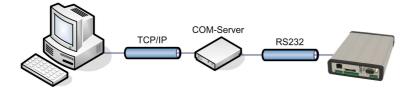


Figure 39: TCP/IP to RS232

The necessary settings of the COM-server will be explained using the W&T COM-server as example. The COM-server can be configured easily via the Wutility.exe program.

- 1.) Open the W&T program
- 2.) Open "'inventory"' and then "'scan local network"'
- 3.) Mac-address is displayed at the menu; click on it
- 4.) Adjust IP-address via "'Configuration"' and "'Assign IP-Address"'
- 5.) Click on telnet (screen) button
- 6.) The telnet menu is shown
- 7.) Press key 3 (setup port 0) and then 2 (UART setup)
- 8.) Further settings see below
- 9.) Save setup and close program
- 10.) Hardware settings see manual of the COM-server

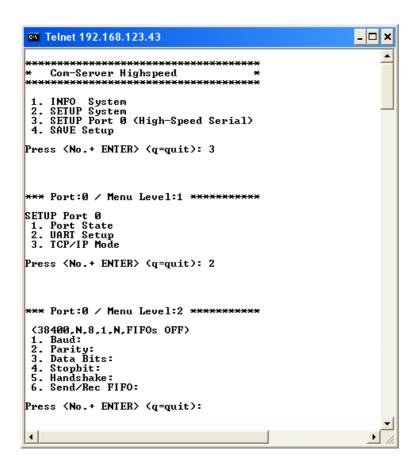


Figure 40: COM-Server configuration over telnet

3.5.5.3 Transition from TCP/IP to RS485 Bus

Up to 31 devices can be connected economically via a COM-server with RS485 bus. You can find details about the structure of a RS485-network in the separate networking description. You can request it from us or download it from our homepage. Please note that the bus number has to be set directly at the terminal (see chapter 4.5.12.

The network structure is a bus. The bus cable is looped through from one device to the other. Branching is not allowed. The PC can be connected at the beginning, the end or somewhere in the middle of the network. The total length of the bus cable must not exceed 1000 m.

Figure 41: TCP/IP to RS485 Bus

3.5.5.4 WLAN

The Mobil-MasterIV can be integrated into a WLAN with a WLAN router via TCP/IP. Please note that a WLAN router is an external component and that you have to pay attention to the compatibility to the present network topology. You have to set the IP-addresses in the system menu bios of the Mobil-MasterIV and the WLAN router in accordance with the network class of the present network.

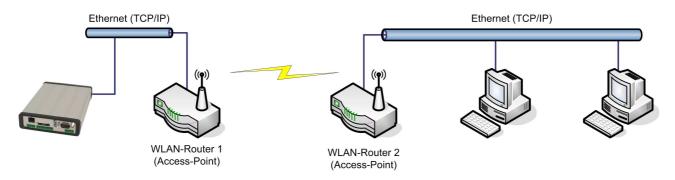


Figure 42: Connection of a Mobil-MasterIV via WLAN router to a WLAN network of a company

3.5.6 Communication via RS485

The RS4485 Datafox Network is based on Modbus. Modbus is a simple and safe bus system and is also used in measurement technology.

RS485 is no standard communication of PCs, therefore you need a converter to set up this kind of network. See chapter 3.5.1.3 for the connection and the wiring for a transition from RS232 (PC) to a RS485 net and see chapter 3.5.5.3 for the transition from TCP/IP (PC) to a RS485 net.

Note:

All components for the RS485 - interlinking can be ordered with the devices. You find the articles in the suitable price-lists or on inquiry.

The bus line connects the converter and 31 Mobil-MasterIV at most in series. Branching is not allowed. The converter can be connected to the bus line at any place. The maximum total length of a bus cable is 1000 m. The bus line should be laid in trunkings at the ceiling or the wall. In order to connect a Mobil-MasterIV the data line is wired to a Cat. 5 outlet and connected via a RJ45 patch cable or via outlets with terminal strips via a stub line from the RS485 bus to the terminals. You can connect one Datafox-Bus per RS232 interface at the PC. You can install as many busses as you like also at different PCs. One communication program per bus is active to operate the communication between the single devices and the central data server. Because of potential differences a Datafox-Bus line should not be laid between different buildings. This connection should be mainly realized via the PC network via glass fibre.

3.5.7 Active connection via TCP/IP

An active connection is supported from the firmware version 04.01.05.x on. This function is available for the main communication TCP/IP, WLAN and GPRS (only from the GSM-module MC55 on)

The connection is always bidirectional full-Duplex. The communication is based on the Datafox protocol of the MasterIV series.

3.5.7.1 Description

The concept for an active connection contains the realisation of an initialisation of the TCP/IP connection between the device-software (firmware) and the DLL-software. The connection is always initialized by the firmware. The link negotiation is done via appropriate commands with the DLL.

Note:

Note: For most providers a TCP/IP connection establishment "from the outside" is not possible. Therefore the connection has to be established by the firmware. Either the connection requests are blocked directly by the provider or the IP-address established by the PC is not the real one of the device.

A connection establishment can be done in TCP/IP networks (also GPRS). The devices do not permit several connections at the same time. Therefore no other connections must be established in order to initialize the connection establishment.

In principle, a connection request of a Device to the DFComDLL is processed as follows:

Manual Datafox Mobil-MasterIV

The DLL receives a connection request on a listen socket. The connection administration checks, whether a port object can be created. After creating a port object, the connection is established and remains for further applications.

3.5.7.2 Configuration of an active connection

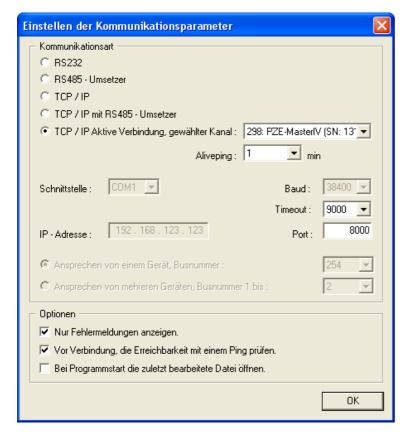
An active connection requires that the following parameters are set or configured in the Mobil-MasterIV or the application (DFComDLL.dll):

- ightharpoonup com.active (0 = deaktiviert, 1 = aktiviert) Switching on/off the active connection.
- ightharpoonup com.notify (0 = deaktiviert, 1 = aktiviert) Switching on/off the active data record message.
- **com.prio** (0 = höchste, 65535 = niedrigste) Priority of the event messages in the queue.
- **com.host** (0.0.0.0 bedeutet alle) Host to one connection should be produced.
- **com.port** Port to one connection should be produced.
- **com.retry** Number of the attempts for connection setup.
- **com.timeout** Time out, after the set number has failed because of connection setup attempts.
- **com.repeat** The time out if by successful message about present records these were not retrieved, until a renewed message should be carried out.
- **com.alive** Time out, when the terminal diminishes an existing communication channel (connection quit) if no Kommunikations takes place. The DLL must send, if a communication channel should not be diminished, cyclically a Ping to the Mobil-MasterIV.
- The bus address of the DLL (for call of DFCComOpenIV) is firmly given with 31. The number of at the same time existing connections is delimited per DLL instance to 50 connections.

Here you have to pay attention to the following value margins and default values:

Description	Name of the	Range of	Default value
	system	values	
	variable		
Activation	com.active	[01]	0
Active data record message	com.notify	[01]	1
Priority	com.prio	[065535]	0
Host	com.host	[IP-Adresse]	0.0.0.0
Port	com.port	[065535]	8000
Connection	com.retry	[065535]	3
Communication timeout	com.timeout	[04294967295]	900
Notification retry	com.repeat	[04294967295]	60
Connection check	com.alive	[04294967295]	0

Table 8: Parameters and default values for the configuration of an active connection



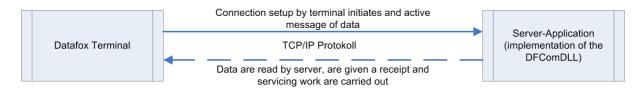
Einstellen der Kommunikationsparameter					
Kommunikationsart					
© RS232					
C RS485 - Umsetzer					
C TCP/IP					
C TCP / IP mit RS485 - Umsetzer					
TCP / IP Aktive Verbindung, gewählter Kanal : 298: PZE-MasterIV (SN: 13 ▼					
Aliveping : 1					
Schnittstelle : COM1 - Baud : 38400 -					
Timeout: 9000 ▼					
IP - Adresse : 192 . 168 . 123 . 123					
Ansprechen von einem Gerät, Busnummer:					
C Ansprechen von mehreren Geräten, Busnummer 1 bis :					
Optionen —					
✓ Nur Fehlermeldungen anzeigen.					
▼ Vor Verbindung, die Erreichbarkeit mit einem Ping pr üfen.					
Bei Programmstart die zuletzt bearbeitete Datei öffnen.					
ОК					

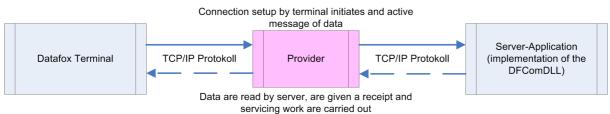
The parameters can be changed via the dialogue active connection configuration in the communication menu and be transmitted to the Mobil-MasterIV. You may find information about the single parameters in the table 8.

Grafik muss noch angepasst werden

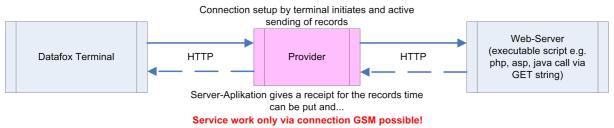
Figure 43: Active connection configuration

The configuration of a Mobil-MasterIV via the DatafoxStudioIV with an active connection requires an active communication port (selected port: see figure on the left) from the device to the DLL. Set the alive ping, the communication timeout and the port according to your demands on the configuration. Afterwards all functions of the DatafoxStudioIV can be used in order to configure the device.


Figure 44: Setting the communication via the Mobil-MasterIV


3.5.7.3 Device servicing via active connection

The following overview shows you the single procedures of the active connection and the possibilities for the servicing of the terminals.


Communication via TCP/IP

Communication via mobile communications (GPRS)

Communication via mobile communications (GPRS)

Communication via mobile communications (GSM)

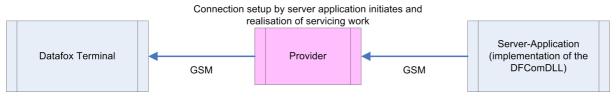
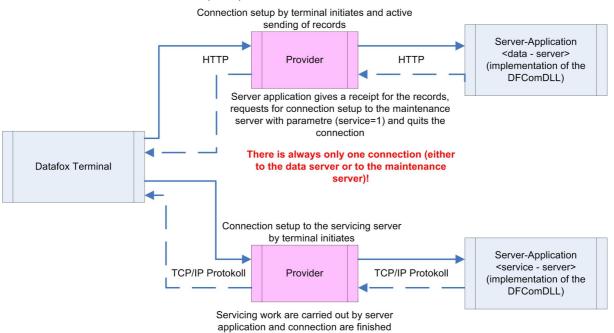



Figure 45:

Manual Datafox Mobil-MasterIV

Communication via mobile communications (GPRS)

3.5.8 WLAN

3.5.8.1 General information

There are two possibilities to configure the match port. Either via the TCP/IP with the DeviceInstallerTM of Lantronix® or via the RS232 using the tool WLANConfig and the DatafoxStudio (from version 04.01.06.xx on).

3.5.8.2 Terms and explanations

3.5.8.2.1 Infrastructure Mode

(Loose translation of an excerpt from the German version Wikipedia, the free encyclopaedia)

The Infrastructure mode is similar to the structure of the mobile communications network: A special base station (Access Point) is used to coordinate the other network nodes (Clients). The base station sends small data packets (so called Beacons) in adjustable intervals (ten times per second by default) to all stations being in the footprint. The beacons contain among others the following information: Network name ("Service Set identifier", SSID), List of supported transfer rates, Type of encryption.

This beacons ease the connection establishment, because the clients just have to know the network name and optional some parameters for the encryption. The permanent sending of beacon-packets also allows a control of the reception quality - also when no user data are sent or received. The beacons are always sent with the lowest transfer rate (1 MBit/s), the successful reception of the beacons does not guarantee a steady connection to the network.

3.5.8.2.2 Ad-hoc Mode

(Loose translation of an excerpt from the German version Wikipedia, the free encyclopaedia)

In the Ad-hoc mode (lat.: "created for this moment") no station is favoured; they all are on a par. Ad-hoc networks can be established quickly and without great effort. But for a spontaneous networking of a few terminals other techniques (Bluetooth, Infrared) are commonly used.

The preconditions for using the Ad-hoc mode are the same as for the Infrastructure mode: All stations use the same network name ("Service Set Identifier", SSID) and optionally also the same settings for the encryption. Because there is no central instance for this operating mode and because no beacon-packets are sent, a client cannot determine, whether there are other stations (using the same settings) within reach, who is part of the network or how good the connection quality is. Therefore, the Ad-hoc mode is suitable only for a small number of stations, that have to be close to each other because of the limited reach of the transmitter. Otherwise, it is possible, that a station cannot communicate with the other stations, because they simply do not receive a signal.

Forwarding data packets between the stations is not intended and not possible without further ado in practice, because in the Ad-hoc mode no information are exchanged, that might give the single stations an overview over the network. Gathering and exchanging these information is part of the upgrading of an Ad-hoc network to a mobile Ad-hoc network: Software components on each stations collect data (e.g. for visibility of other stations, connection quality etc.), exchange them among each other and make decisions concerning the forwarding of the user data. The development in this field is not finished yet. By now

a long list of experimental protocols (OLSR, MIT RoofNet, B.A.T.M.A.N etc.) and several proposals for standardisation (Hybrid Wireless Mesh Protocol, 802.11s) as well as some commercial solutions (e.g. Adaptive Wireless Path Protocol from Cisco) were produced.

3.5.8.2.3 Frequencies and ports

Channel	Fre-	Permit in	Channel	Fre-	Permit in
Number	quency		Number	quency	
	(GHz)			(GHz)	
1	2,412	Europa, USA, Japan	8	2,447	Europa, USA, Japan
2	2,417	Europa, USA, Japan	9	2,452	Europa, USA, Japan
3	2,422	Europa, USA, Japan	10	2,457	Europa, USA, Japan
4	2,427	Europa, USA, Japan	11	2,462	Europa, USA, Japan
5	2,432	Europa, USA, Japan	12	2,467	Europa, Japan
6	2,437	Europa, USA, Japan	13	2,472	Europa, Japan
7	2,442	Europa, USA, Japan	14	2,484	Japan

Table 9: Frequencies and ports

3.5.8.2.4 Security and encryption

(Loose translation of an excerpt from the German version Wikipedia, the free encyclopaedia)

Part of the WLAN standard IEEE 802.11 is the Wired Equivalent Privacy (WEP), a security standard containing the RC4 algorithm. The contained encryption, with a static key of a length of just 40 bits (called 64 bits) or 104 bits (called 128 bits), sometimes also 232 bits (called 256 bits), does not guarantee, that the WLAN is secured sufficiently. By collecting pairs of keys Known-Plaintext-Attacks may happen. There are freely available programs, that are able to decrypt the password (a fast computer assumed), sometimes even without a complete packet cycle. Furthermore, each user of the network can read along the whole communication. The combination of RC4 and CRC is considered to be cryptographic insecure.

Therefore, technical complements were developed (e.g. WEPplus, Wi-Fi Protected Access (WPA) as advance and subset of 802.11i, Fast Packet Keying, Extensible Authentication Protocol (EAP), Kerberos or High Security Solution, that reduce the insecurity of WLAN more or less effective.

Child of the WEP is the new security standard 802.11i. It offers an increased security by using the TKIP (Termporal Key Integrity Protocol) for WPA or the AES (Advanced Encryption Standard) for WPA2. At the moment, it is regarded to be non-decipherable, as long as no trivial passwords are used, that can be decrypted via a dictionary-attack. It is recommended to create the passwords with a password generator, that contain special, numeric and alphabetical characters (upper and lower case) and have a minimum length of 32 characters.

CCMP (= Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) or also Counter-Mode/CBC-Mac Protocol is, according to IEEE 802.11i, a cryptography algorithm. CCMP is based on the Advanced Encryption Standard (AES) and uses a 128-bit-key with a 48-bit-initialisator for answer query.

3.5.8.2.5 Authentification

(Loose translation of an excerpt from the German version Wikipedia, the free encyclopaedia)

Extensible authentication Protocol is a protocol for authenticating clients. It can access to the RADIUS server for user administration. EAP is mainly used for large WLAN installations within WPA.

Encryption systems, that require, that both members know the keys before communicating (= symmetric systems), are called Pre-Shared Key (PSK). An advantage of the PSK encryption is, that it can be realized more easily between two known members than asymmetric encryption. The major disadvantage of this system is, that the two members have to exchange the key in private before the communication takes place. Therefore, the PSK system is not suitable for many applications in the internet (e.g. online shopping), because there the prior exchange of a key is impossible or far too extensive. In such a case it is easier to use the Public-Key system.

3.5.8.2.6 Passwords

(Loose translation of an excerpt from the German version Wikipedia, the free encyclopaedia)

Modern encryption system are technical advanced insofar as they often can only be decrypted via dictionary attacks (except from trying all possible keys = Brute-Force method). At both attacks the weak point is the password (key), set by the user. In order to create a password, that is not less insecure than the actual encryption (112 to 128-bit-key for current systems), theoretically a sequence of about 20 random characters is necessary. If no random characters are used, considerable longer passwords are necessary in order to guarantee the same security level.

The length of passwords, that can be used for encryption, is often limited by the software (e.g. using AES passwords with more than 32 characters do not increase the security). Therefore, you should always use combinations of characters, that consist of rare words or word orders, fantasy or foreign-language words, initial letters of a sentence, numeric and/ or special characters or even combinations thereof. Its components should be unforeseeable for an attacker, who is well-informed about the person and his/her interests. As alternative you can use a password generator and fix the password in you memory or you note it on a secret place.

A relatively secure password could be: 0aJ/4%(hGs\$df"Y! (16 characters). The major problem of such sequences using random characters is, that they are difficult to be kept in mind and therefore have to be noted somewhere. A simpler alternative is, to use a rehearsed sentence and to change some characters, e.g. "'dIE bANANNE*3 durch 1/4 nIKOTIN"' (32 characters). It is very important to work in enough random characters. Suitable is the use of the initial letters of a sentence, e.g. "'LS-Wbt7m/Ia1000tftY"', created with the initial letters of the sentence "'Little Snow-White beyond the 7 mountains/ Is a 1000 times fairer than You"'.

Although the use of special characters can increase the security, because the password becomes more complicated, you should use them carefully, if there is the possibility, that the password has to be used in foreign countries: It might be possible, that some special characters do not exist on foreign keyboards.

3.5.8.3 BIOS dialogue DatafoxStudioIV

In the BIOS dialogue of the Datafox Studio (< Communication => Device configuration BIOS >) you can make the same settings as directly on the terminal (except the restriction at TCP/IP Set default and Factory default WLAN, which is possible only at the terminal). You could compare the BIOS menu with a remote maintenance tool, but changing the settings is accessible only via RS232.

The setting of WLAN parameters is going to be available from version 04.01.06.xx in the Datafox Studio.

Version: 04.01.07.00 Page 68 www.datafox.de

3.5.8.4 Dependencies

Because of the different methods for parameterisation, certain dependencies of several parameters arise.

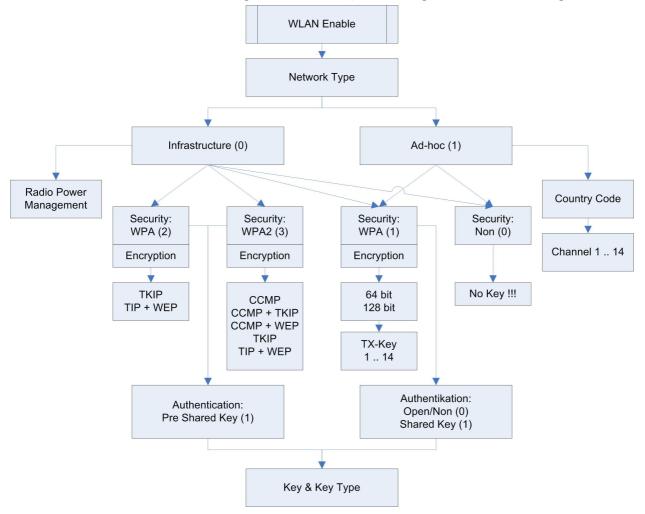


Figure 46: Dependencies

3.5.8.5 WLAN configuration via the Lantronix tool

You may find the device installerTM of Lantronix® on the enclosed Datafox product DVD under DVD:

Datafox-Optionen (eingebaute Module) wLAN, Matchport.

With the help of this tool the COM servers Xport and MatchPort of the Datafox devices can be configured. The device installer accesses to the COM server via TCP/IP, the Datafox terminals via RS232. If a COM server is not available, because it is adjusted that much, so that the device installer is unable to access, it is possible to reset the COM server to the default values via the BIOS menu of the terminal.

3.5.8.6 WLAN configuration via the DatafoxStudioIV

3.5.8.6.1 General

The program WLANConfig can set the TCP/IP and the WLAN settings of the MatchPort via RS232. These settings can be saved as a file and the data of this file can be transmitted to the device. The dependencies of the single parameters among each other are permitted or locked by the program automatically. Four dialogues are provided for working with the program.

- ► WLAN settings (main dialogue)
- ► Selection of the serial interface (COM settings)
- ► Selection of the configuration file (Select INI-File)
- ► TCP/IP settings (Terminal TCP/IP settings)

3.5.8.6.2 Selection of the serial interface



Figure 47: Selection of the serial interface

Via this dialogue you can select the interface of the PC, to which the MasterIV terminal is connected. Usually a baud rate of 38400baud is set, which has to correspond to that one of the terminal. You start the dialogue by pressing the button COM settings.

3.5.8.6.3 Selection of the configuration file

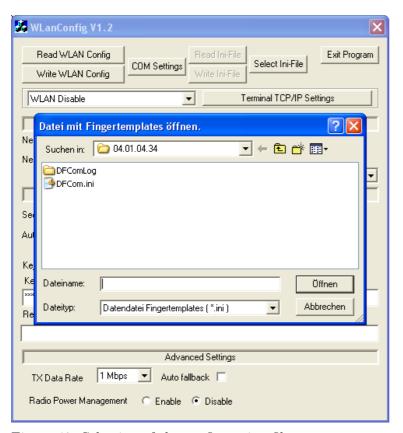
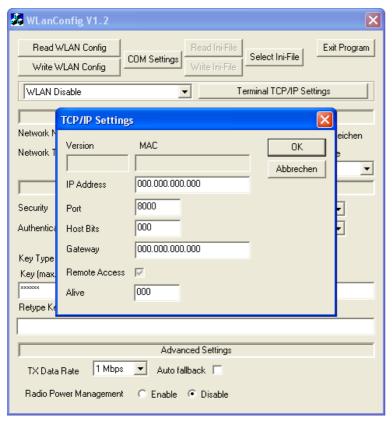



Figure 48: Selection of the configuration file

Via the button Select INI-File the dialogue is started. Here you can create new files or select a file, where data are logged on. On the INI file all settings of the TCP/IP and the WLAN are logged.

3.5.8.6.4 TCP/IP settings

Via the button Terminal TCP/IP Settings the dialogue is started. The current firmware version of the MatchPort and the MAC-address are displayed. You can edit the other parameters, which are equal to those of the BIOS dialogue of the terminal and of the Datafox Studio.

Figure 49: Selection of the configuration file

3.5.8.6.5 WLAN settings

The WLAN settings allow the editing of values, that were read out of the terminal and loaded inon a INI file or entered manually. It is very important, that the key cannot be read out of the terminal. It also cannot be re-recorded, if it was not entered. If the key is available in the INI file, a group of * characters is displayed on the key-edit fields after loading the data. It is also transmitted to the device then. In order to use WLAN you have to set WLAN Enable. This parameter can also be set by the device installer of Lantronix. If you want to configure several devices via WLANConfig, you have to note, that the IP-address of the devices has also to be set.

Caution:

After transmitting the parameters the device has to be set from RS232 to TCP/IP, so that the MatchPort is activated. Only then it is available in the network.

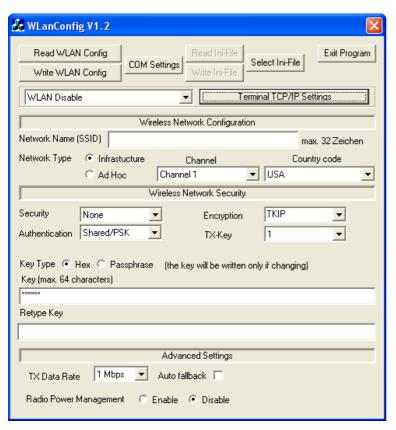


Figure 50: Selection of the configuration file

Via Read WLAN Config the data are loaded from the device to the program.

Via Write WLAN Config the data are loaded from the program into the device.

Via Read INI file the data are loaded from the selected file into the program.

Via Write INI file the data are written from the program in the file.

3.6 Access control II with TS TMR33 modules

The following hardware is available to construct an access control with TS TMR33 modules. The different options can be combined with each other according to the hardware requirements of the single devices.

Mobil-MasterIV

The Mobil-MasterIV supports the opening of up to 8 doors. The number was limited to 8 doors because the device has to carry out additional tasks for time and attendance parallel to the access control and the speed of the access control has nonetheless to be high.

Türmodul (TS TMR33-TM)

 $72 \times 72 \times 40 \text{ mm}$

The door module is offered as pure electronic component e.g. to build it in a patress box, or in a housing for surface mounting with alarm control panel.

Reader (TS TMR33-L)

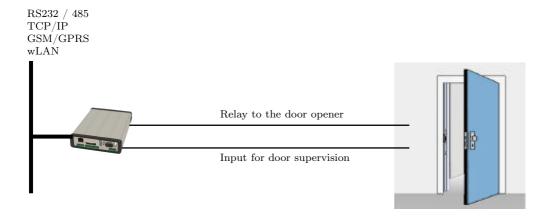
 $80 \times 80 \times 25 \text{ mm}$

The reader can be ordered separately to connect it directly to a PC or another access check. A connecting diagram and a description of the commands for the activation are included.

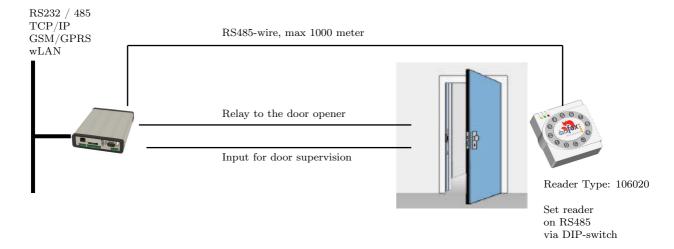
Module set = reader + door opening function (TS TMR33-LTM))

 $80 \times 80 \times 25 \text{ mm}$

The module set can be ordered separately to connect it directly to a PC or another access check. A connecting diagram and a description of the commands for the activation are included.


3.6.1 Set-up

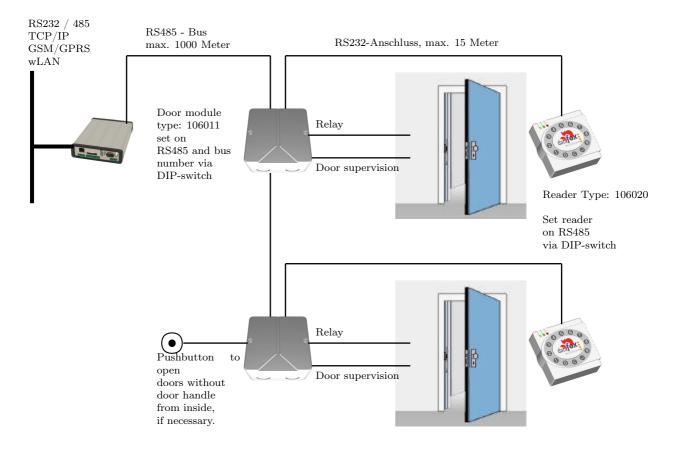
In the following chapters different possibilities to set the device up are explained. The Mobil-MasterIV is used as reference device.


3.6.1.1 A door without a separate reader

The time recording terminal is access scanner, access master and door-opener at the same time. This solution should only be used in protected places so that the door opening relay cannot be manipulated.

3.6.1.2 A door with a separate reader

The Mobil-MasterIV is installed in a protected area inside a building and the reader is installed outside. The terminal is access master and door-opener at the same time. The door opening relay is in the Mobil-MasterIV and thus in the protected area. The access identification captured by the reader is transmitted to the Mobil-MasterIV and analysed by it. If the access is permitted, the door is opened via the relay in the Mobil-MasterIV.



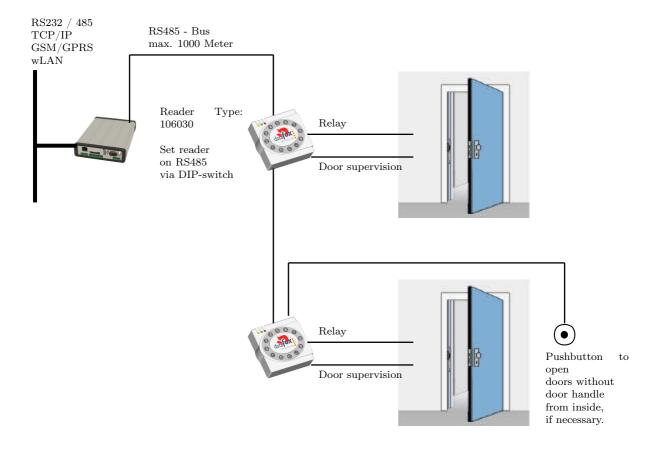
This version is used frequently and can be installed easily and economically as shown in the figure above.

3.6.1.3 Several external doors via RS485 bus

Here a door module has to be used so that the door opening relay is in the protected area.

The door module permanently calls up the reader. If a transponder is read the information is transmitted from the reader to the door module. The Mobil-MasterIV permanently polls to the door module. If a booking is available, it is collected immediately. If the access is permitted, the Mobil-MasterIV sends a command to the door module to open the door.

Note:



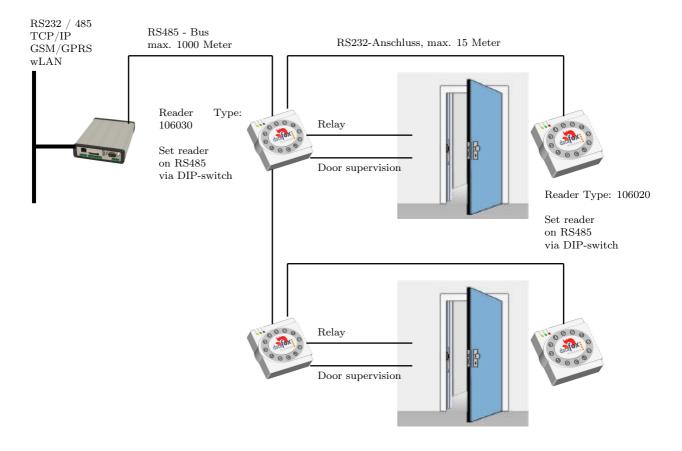
The relay in the Mobil-MasterIV can be used here as well. See chapter 3.1, that means the terminal can replace the first door module. In order to use the appropriate reader in the RS485 bus, it has to be set on RS485 via the DIP switches at the backside of the reader.

3.6.1.4 Several internal doors via RS485 bus

The combined reader + door-module is used here. The door opening relay is included in the combined module. Watch out, this assembly must not be used at outdoor locations because then the relay is not in a protected area.

The Mobil-MasterIV permanently polls to the door module. If a booking is available, it is collected immediately. If the access is permitted, the Mobil-MasterIV sends a command to the door module to open the door.

Note:



The relay in the Mobil-MasterIV can be used here as well. See chapter 3.1, that means the terminal can replace the first door module. In order to use the appropriate reader in the RS485 bus, it has to be set on RS485 via the DIP switches at the backside of the reader.

3.6.1.5 Mantrap function with RS485 bus

The combined reader + door-module and the reader-module is used here.

The Mobil-MasterIV permanently polls to the door module. If a booking is available, it is collected immediately. If the access is permitted, the Mobil-MasterIV sends a command to the door module to open the door.

Note:

The relay in the Mobil-MasterIV can be used here as well. See chapter 3.1, that means the terminal can replace the first door module. In order to use the appropriate reader in the RS485 bus, it has to be set on RS485 via the DIP switches at the backside of the reader.

3.6.2 Connection

The following figure shows the possibilities for connecting the TMR33 devices to a Mobil-MasterIV for the access control. The TMR33 devices have to be set depending on the interface that is used (RS232 or RS485).

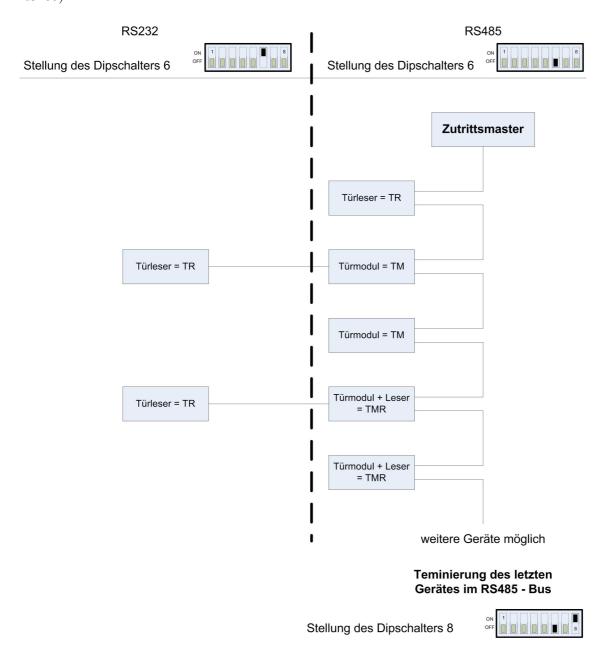


Figure 51: Connection of the access control II

The DIP switches 1 - 5 are for the bus configuration. Via them the bus number of the device is set. The DIP switch 1 in position "'ON"' and 2 - 5 in position "'OFF"' stand for bus no. "'1"'. The DIP switches 1 and 2 in position "'ON"' and 3 - 5 in position "'OFF"' stand for bus no. "'3"'.

Caution:

The installation and connection of the TMR33 module may only be carried out by a person qualified in this field. Avoid switching the connecting terminal (reverse polarity).

From this arise different possible combinations. The following figures show examples for the connection wiring.

3.6.2.1 Wiring

In most cases a shielded twisted pair cable is used as transmission medium for the assembling of a RS485 bus. It should be a twisted pair cable because that way the voltages induced by an electromagnetic field work opposite and thus offset each other.

In accordance with the specifications (TIA-EIA-485-A) the maximum cable length depends on the transmission rate.

Segmentlänge [m]	100	200	400	1000	1200
${\bf Datenrate~[kBit/s]}$	12000	1500	500	187,5	9,6

Table 10: Cable length dependent from the data rate

Our recommendations for a data cable are the following types of cables: Li-YcY $2x2x0.5 \ mm^2$, J-2YY $2x2x0.5 \ mm^2$ oder J-Y(ST)Y $2x2x0.5 \ mm^2$ (Cat5 shielded).

Caution:

When erecting an access control system, a calculation of the maximum cable length, the necessary cable cross-section and voltage supply has to be done in any case. See chapter 3.6.2.2 for further hints.

Example: Wiring for a door

An external access reader TS TMR33-L is connected directly to the terminal. The door opening is controlled via the relay integrated in the terminal. Further functions, e.g. supervision of the door (open or closed), can be realized via the digital inputs of the Mobil-MasterIV.

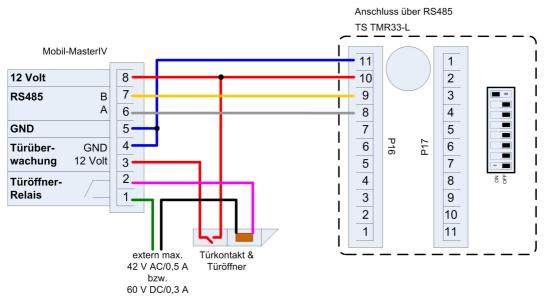


Figure 52: Wiring for a door

In einem solchen Fall ist die Reader-Tabelle (Zutrittskontrollliste) wie folgt zu konfigurieren:

ID	ZM	TM	RefLocation	RefAction	PinGeneral
1	1	320	0	1	0
2	1	000	0	1	0

Table 11: Reader table

ID = 1 identifies the data record for the Mobil-MasterIV, that always gets the value 320 in the column TM (Türmodul/ door module). ID = 2 identifies the external reader (TS TMR33-L), that is connected to the Mobil-MasterIV via RS485. The type of connection (RS485) is marked by the zero at this position 000 in the column TM.

Example: Wiring of a mantrap

A door is controlled via an internal door module with integrated reader TMR33-TMR and an external access reader TMR33-TR as mantrap In this case the internal door module is connected to the Mobil-MasterIV via a RS485 bus. The external access reader is connected to the internal door module with a RS232 stub. The door opening is controlled via the relay integrated in the door module TMR33-TMR. In this case the door module with the relay is in the secure area and the external access reader without a relay is in the insecure area.

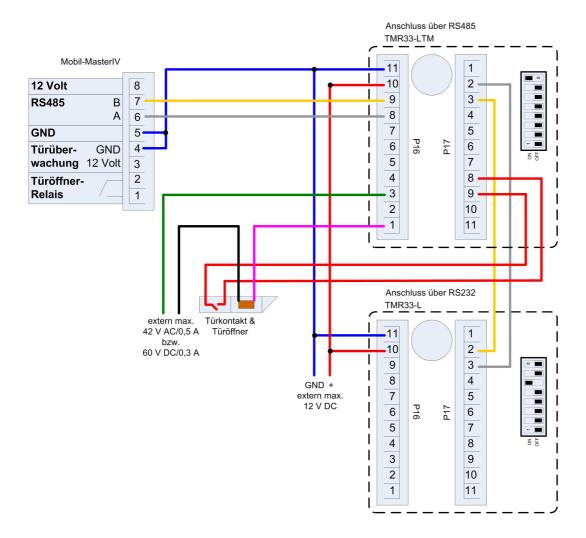


Figure 53: Wiring of a mantrap

Note:

- Connection for electricity supply via power supply unit or bell transformer. Please note the hints for the calculation of the cable cross-section and the cable length.
- Install the door-opener in the protected area when using it for exterior doors.
- At closed door contact aprox. 15 mA are used up at 12 V = 0.18 Watt. This means a consumption of aprox. 1.6 kWh per year.

Example: Controlling the door-opener only via the ZK-II. You can control the door-opener directly via the access control-II (ZK-II). Please note that the door-opener has to work in a voltage range from 8 to 12 V DC and must not exceed a power consumption of 100 mA.

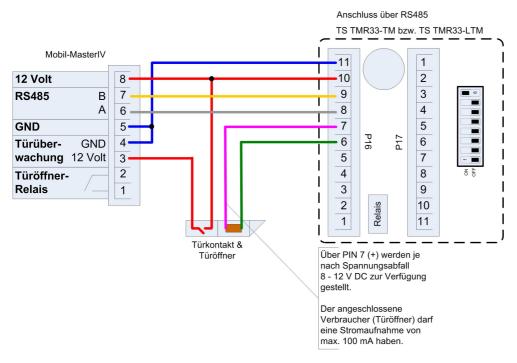


Figure 54: Controlling the door-opener only via the ZK-II

Example: Controlling the door-opener via the ZK-II and a push-button. It is possible to additionally connect a push-button for controlling the door-opener.

Figure 55: Controlling the door-opener via the ZK-II and a push-button

Example: Controlling the door-opener via the ZK-II, relay and push-button

You want to control the door-opener directly via the access control-II. You want to open the door without transponder via a push-button in a lobby with a view of the entrance area. Additionally, this push-button circuit should only be active at certain times. This scenario can be portrayed as follows:

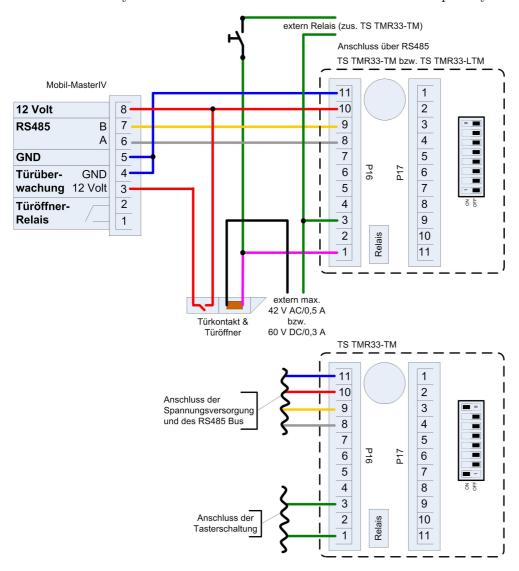


Figure 56: Controlling the door-opener via the ZK-II, relay and push-button

Initially, we use an external voltage source for the supply of the door-opener. It is controlled via the relay of the TS TMR33-TM, connection 1 and 3 of the strip terminal P16. The NC contact of the relay is bridged with the push-button. The activation of this push-button circuit is realized via an additional relay (TS TMR33-TM). You can configure the period of time of the activation at the access control lists in the ZK-II. For this you have to include the additional TS TMR33-TM module in the reader table. In the action table you set which output (relay) is switched on which module of the reader table. Set the elapse-value on 0. You define via the reference on a time model (RefTime) from when the relay switches (push-button circuit activated) and when the relay drops out again.

Manual Datafox Mobil-MasterIV

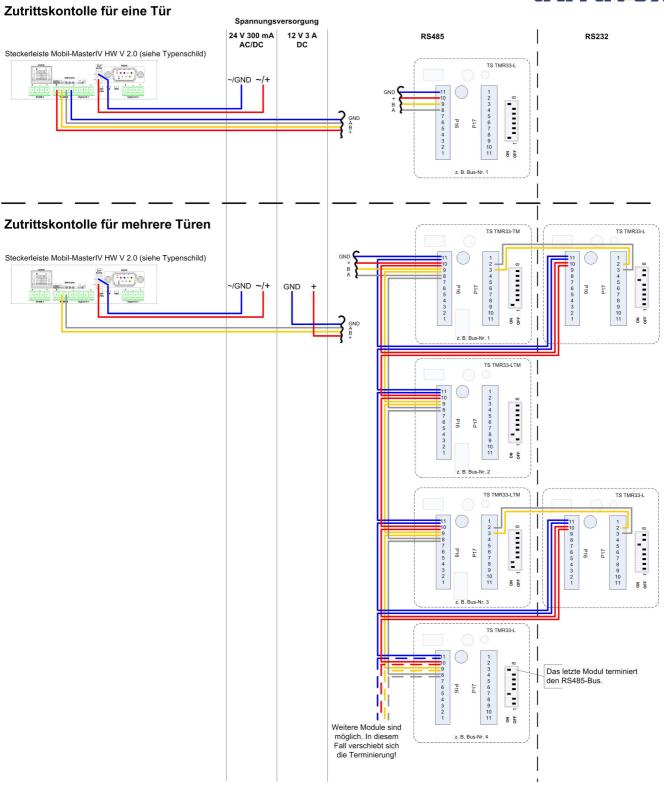


Figure 57: Wiring scheme

3.6.2.2 Calculation instructions

When using Datafox access readers or door modules, the necessary cable cross-section has to be calculated before setting up a RS485 network for the access control. The voltage drop in the whole bus must not be higher than 4 V. Please note that if you use a Datafox device power supply unit as voltage source, 16 modules at most (8 in the RS485 bus and 8 via RS232 stub line) can be fed.

Maximum power consumption of the single modules:

TS-TMR33-TR	56,5 mA
TS-TMR33-TM	156,0 mA
TS-TMR33-TMR	180,0 mA

The result of it is a permissible maximum power consumption per Datafox device power supply unit of $(8 \times 180,0 \text{ mA} + 8 \times 56,5 \text{ mA})$ 1,9 ampere. In order to assure this, you can calculate the necessary cross-section for a given cable length or the permissible maximum cable length for a given cable cross-section.

Caution:

Before a setting up and commissioning of a ZK-network, in any case the calculation has to be done by a person qualified in this field.

The cable cross-section is calculated as follows:

$$q = \frac{2 * I * l}{\kappa * U_v}$$

 $q = \text{Cable cross-section in } mm^2$

I = Current in A

l = Cable length in m

 $\kappa = \text{Conductivity (kappa) for Cu-conductor} = 56 \frac{m}{\Omega * mm^2}$

Uv = Voltage drop 4 V at most

Thus the developed equation for calculating the maximum cable length for a given cable cross-section is:

$$l = \frac{q * \kappa * U_v}{2 * I}$$

3.6.2.3 Topologie

If a bus topology is used when setting up the network, you have to calculate the cable cross-section for each bus segment with regard to the maximum power consumption of the respective segment (see figure 58).

At a star cabling the cable cross-section for each cable has to be calculated with regard to of the power consumption of the respective module.

Note:

Because this document only deals with the voltage supply of an access control system, the depiction of the RS485 data bus is abandoned in the figures. The voltage supply is simply depicted as one line. Additionally, the cable length that has to be calculated is marked by a broken line.

3.6.2.4 Examples

3.6.2.4.1 Bus topology

We take as a basis that the longest distance from the voltage source to the last module is 65 m.

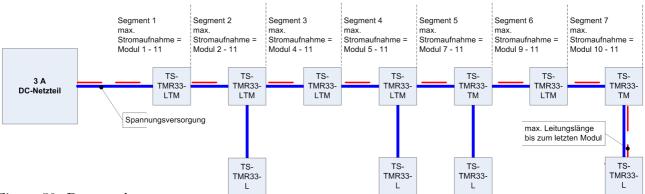


Figure 58: Bus topology

In order to assure a high safeguarding and to keep the calculation simple, you can take the following steps. Calculate the power consumption of all modules connected to a voltage source (max. 16 modules) and take the longest distance from the voltage source to the last module. If the result of this simplified method of calculation for the cable cross-section is a value higher than $1,5 \ mm^2$, you have to use additional power supply units and recalculate the system. By this additional power supply unit you can compensate the voltage drop at a smaller cable cross-section by a shorter cable length (two sub-networks with regard to the voltage supply not with regard to the RS485 data bus). The calculation of the total power consumption for the example in figure 58 is as follows.

$$I = (4 * 56, 5 mA) + (2 * 156, 0 mA) + (5 * 180, 0 mA) = 1.438 mA = 1,438 A$$

Now we put the values in the equation and get the necessary cable cross-section:

$$q = \frac{2*1,438A*65m}{56\frac{m}{\Omega*mm^2}*4V} = \frac{2*1,438A*65m*V*mm^2}{56m*4V*A}$$

$$q = 0,83mm^2$$

If we take as a basis that the bus has a maximum length of 200 m, the result of the calculation will be a cable cross-section of $2,6 \text{ } mm^2$. That means we would need an additional power supply unit.

3.6.2.4.2 Star topology

In this example the maximum cable length for each cable is calculated separately for a given cable cross-section. We take a cable cross-section of $0,75mm^2$ as a basis. The length of each cable has to be calculated separately.

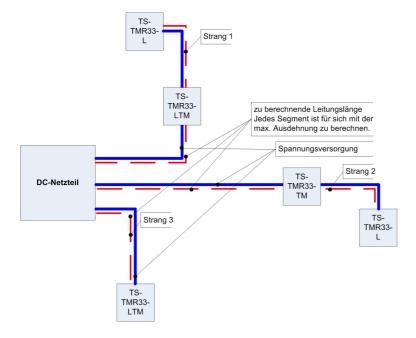


Figure 59: Star topology

Manual Datafox Mobil-MasterIV

cable 1:

I = 1x180, 0mA + 1x56, 5mA

I = 236, 5mA

I = 0,2365A

The result for the maximum cable length for cable 1 is:
$$l = \frac{0,75mm^2*56\frac{m}{\Omega*mm^2}*4V}{2*0,2365A} = \frac{0,75mm^2*56m*4V*A}{2*0,2365A*V*mm^2}$$

l = 355, 2m

cable 2:

I = 1x156, 0mA + 1x56, 5mA

I = 212, 5mA

I = 0,2125A

The result for the maximum cable length for cable 2 is:
$$l = \frac{0.75mm^2*56\frac{m}{\Omega*mm^2}*4V}{2*0.2125A} = \frac{0.75mm^2*56m*4V*A}{2*0.2125A*V*mm^2}$$

l = 395, 3m

cable 3:

I = 180,0 mA

I = 0,18A

The result for the maximum cable length for cable 3 is:
$$l = \frac{0.75mm^2*56\frac{m}{\Omega*mm^2}*4V}{2*0.18A} = \frac{0.75mm^2*56m*4V*A}{2*0.18A*V*mm^2}$$

l = 466, 7m

Note:

The total power consumption has to be calculated for each cable.

3.6.3 Configuration

The basis of the access control II are tables. They store all information about the hardware configuration of the access control system, access right of the staff, periods of time (activation, blocking times, holidays,...). There is the following connection between the tables:

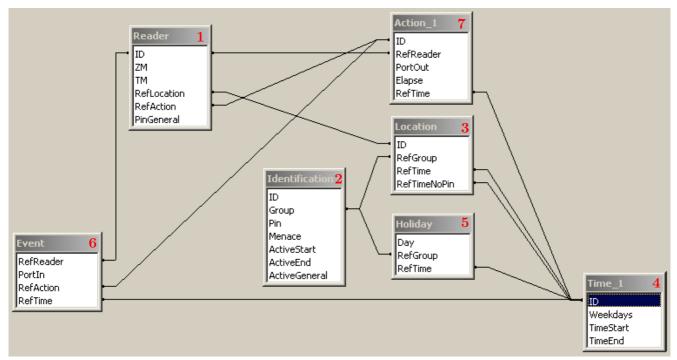


Figure 60: Data structure of the access control II

The tables are created as text files. For an easier administration you can add comments within the files.

When adding comments you have to notice that in a comment line no field values can be given and that the comment line has to start with a semicolon.

A Reader.txt (Reader table) could look as follows:

- ; Reader list for the test access control system
- ; ID ZM TM RefLocation RefAction PinGeneral
- $1 \quad 1 \quad 320 \quad 1 \quad 1 \quad 0$
- 2 1 010 1 1 0

Please gather a close description of the table structure, indication of the data types and field length from the following tables.

Alias	Data type		Description
		Length	
ID	Number	4	Unique Key $(Wert > 0)$ of the Reader table.
	(int)		
ZM	Number	4	It has in our example number 1. If there are several
	(int)		PZE-MasterIV in an access system, they can be depicted in
			one table connection and it is not necessary to have a
			separate string for each PZE-MasterIV.
TM	Number	3	Contains two information in one number. Both figures on
	(int)		the left (010)indicate the bus number of the door module,
			the figure on the right (010) contains information about the
			type of connection. A 0 means a connection via RS485, a 1
			stands for a connection via RS232 as stub.
RefLocation	Number	4	Indicates which room is supervised by the reader.
	(int)		
RefAction	Number	4	Indicates which action is worked through after a successful
	(int)		check.
PinGeneral	Number	8	Can contain a numerical sequence via which a person
	(int)		without a card gets access.

Table 12: Reader table (list of all devices installed in the system - master and door modules)

Alias	Data type		Description
		Length	
ID	String	20	Contains the card no. which is read at the TMR33 device
	(ASCII)		or terminal. A card can occur several times (is assigned to
			several authority groups).
Group	Number	4	Assigns the card to an authority group.
	(int)		
Pin	Number	8	Activates a PIN query if not equal 0. Please note that a
	(int)		PIN must not start with a zero. 0815 would be invalid.
Menace	Number	4	Activates (if not equal 0) a "'menace-PIN"' that can be
	(int)		added to the PIN. If entered, the system sends a data
			record that can be analysed by software developed for this
			purpose and sets off the alarm.
ActiveStart	String	10	The tag entered here indicates the beginning of validity of
	(Date)		the card.
ActiveEnd	String	10	The tag entered here indicates the end of validity of the
	(Date)		card (e.g. $2007-07-12 = yyyy-mm-dd$).
ActiveGeneral	Number	1	Activates or deactivates this card record.
	(int)		0 = card blocked
			1 = card active
			2= virtual card (use only via DLL)
			3 = access only by entering the PIN
			9 = general authority (no PIN query)

Table 13: Identification table (list of all cards known by the system))

Alias	Data type		Description
		Length	
ID	Number	4	ID of the room. All other tables refer to this data line via
	(int)		this number, if necessary.
RefGroup	Number	4	Reference to the identification table. Labels the access
	(int)		authorized group. All cards of this group have access to
			this room.
RefTime	Number	4	The time model in which authorized persons get access. (0
	(int)		= not used)
	Number	4	The time model to which an additional PIN does not need
RefTimeNoPin	(int)		to be entered (at peak times etc.).

Table 14: Location table (defines which card groups get access to which room at which time)

Alias	Data type		Description
		Length	
ID	Number	4	ID of the time model. All other tables refer to this data
	(int)		line via this number, if necessary.
Weekdays	Number	7	Indicates the weekdays on which the following period of
	(int)		time should be applied to (form: 7 digits at most 1-7 e.g.
			134567 = Monday, Wednesday till Sunday)
TimeStart	String	5	The start time for the period of time. (form: 24h HH:MM)
	(Time)		
TimeEnd	String	5	The ending time for the period of time.
	(Time)		

Table 15: Time table (grouping of single time zones (weekday from to) as a time model number)

Alias	Data type		Description
		Length	
Day	String	10	Date of the blocking day. (form: YYYY-MM-DD)
	(Date)		
RefGroup	Number	4	Indicates the authorization group to which the blocking
	(int)		day is applied.
			A zero defines a global validity for all groups.
RefTime	Number	4	Indicates the assigned time model. $(0 = \text{not used})$ During
	(int)		this time access is granted. Thus, also "'half holidays"' like
			New Year's Eve can be realized.

Table 16: Holiday table (setting of blocking days like holidays or company holidays)

Alias	Data type		Description
		Length	
RefReader	Number	4	Module (door module or master) on which is the digital
	(int)		input.
PortIn	Number	1	Number of the digital input on the module.
	(int)		
RefAction	Number	4	Reference to the action that should be carried out (e.g.
	(int)		switch relay).
RefTime	Number	4	The time model which indicates when the digital input is
	(int)		checked. $(0 = \text{not used})$

Table 17: Event table (assigning an action to a signal at the digital input)

Alias	Data type		Description
		Length	
ID	Number	4	Action number, it can occur several times because of
	(int)		several actions that have to be worked through.
RefReader	Number	4	Module (door module or master) on which an
	(int)		output(relay) is switched.
PortOut	Number	1	Indicates the number of the output on the module.
	(int)		
Elapse	Number	3	The duration of the switching of the relay $(0 =$
	(int)		permanently). Unit 200 ms
RefTime	Number	4	The time model indicates when the output may be
	(int)		switched. $(0 = not used)$

Table 18: Action table (list of all workable actions in the access control system; an action group - all actions with the same action number - can switch several relays)

3.7 Timing of the digital exits for the MasterIV device series

It is possible to time the digital outputs of the MasterIV device series via tables. Thus, for example a turn down of the heating system at nigh, a buzzer control and much more can be realized.

Caution:

In order to use the timing of the digital exits, the firmware version 04.01.01.17 (or higher) has to be installed on the terminal.

The following tables have to be configured:

- ► Action
- ► Reader
- ightharpoonup Time

Description:

Each action that should be activated has to be entered in the table Action. The table Action refers to the tables Reader and Time. In the table Reader the module is left on which the relay or the Open Collector is to be switched. The reference to the table Time indicates when the switch shall be done. If start and stop time are entered, the relay is **switched on** when exceeding the start time and **switched off** when exceeding the stop time. The entry of the duration **Elapse** in the table Action is ignored. If the relay should only be activated for a few seconds, e.g. for a buzzer control, the stop time has to be set on "'00:00"'. If the start time is exceeded, the respective exit will be switched for X seconds (RefTime in Action table). The entry **Elapse** in the table Action now indicates the on-time.

Example:

- A buzzer is to be activated for 3 seconds from Monday to Friday at 10.00 am and 4 pm 16.00. The buzzer is controlled by the internal relay of the Mobil-MasterIV.
- The heating system is to be turned on the "'day mode"' at 07.00 am and on the "'night mode"' at 7 pm 19.00 on all weekdays. The corresponding relay is at the door module with the bus number 2.

Reader.txt

; ID ZM TM RefLocation RefAction PinGeneral

1	1	320	0	0	0
2	1	020	0	0	0

Time.txt

; ID Weekdays TimeStart TimeEnd

3	12345	10:00	00:00
4	12345	16:00	00:00
5	1234567	07:00	19:00

Action.txt

; ID RefRead PortOut $\boldsymbol{E} \boldsymbol{\mathsf{lapse}}$ RefTime

6	1	1	15	3
7	1	1	15	4
8	2	1	0	5

3.8 Access control II with PHG modules

The following hardware is available to set up an access control with PHG modules. The devices can be combined in different ways according to their hardware requirements.

Mobil-MasterIV

If the Mobil-MasterIV is used for the access control, door supervision or remote monitoring, one device can supervise up to 8 doors and control 8 doors at most.

VOXIO

Unterputz: 81 x 81 x 11 mm (BxHxT) Aufputz: 81 x 81 x 40 mm (BxHxT)

The VOXIO can be used with Legic or Mifare. It is available for in-wall or on-wall mounting with or without keyboard. Each reader has a sabotage recognition, three lamps for visualising the state and a buzzer for the acoustic signalling.

RELINO

 $50 \times 50 \times 43 \text{ mm (BxHxT)}$

The RELINO reader can be used with Legic or Mifare. It is available for in-wall mounting. Each reader has three luminous fields for visualizing the state and a buzzer for acoustic signalling.

I/O-Box

 $51 \times 48 \times 22 \text{ mm (LxBxH)}$

The I/O-Box as equipment for the RFID-wall reader or RELINO reader has two digital inputs and two digital outputs. The I^2C bus is used as interface.

3.8.1 Connection

In order to connect the PHG modules please note the PHG documentation on the Datafox CD:

..\\Datafox-Geräte\Datafox-Zutritt-Module\PHG *.pdf

In the PHG documents for the single modules the pin assignment and configuration via the DIP switches are described. In order to carry out an access control with the Mobil-MasterIV the option "'access" has to be integrated (Datafox Art. no. 105201). The following figure shows the possible connections o PHG devices to a Mobil-MasterIV for an access control.

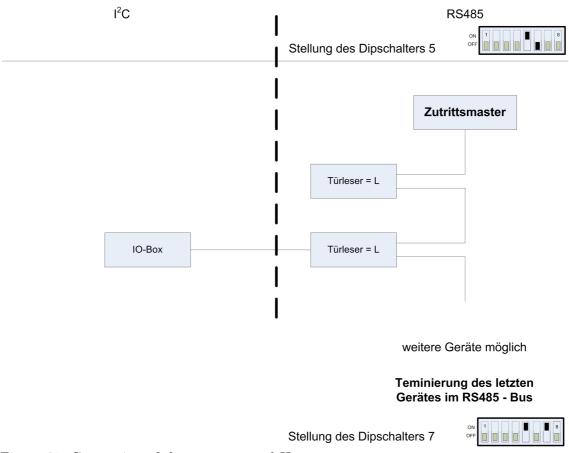


Figure 61: Connection of the access control II

The bus number of the module is set via the DIP switches 1 - 4. The DIP switch 5 always has to be at "'ON". The DIP switches 6 and 8 always have to be at "'OFF". With the DIP switch 7 = "'ON" the RS485 bus is terminated at the last module, otherwise always "'OFF".

If additionally a door-opener is to be controlled via a relay, the IO-box has to be used. With the IO-box two digital exits as relays are available.

3.8.2 Configuration

The access modules of PHG with phg-crypt-protocol use an encryption in accordance with the Rijndael / AES-128 standard (AES - Advanced Encryption Standard). The code is set in the setup under access after selecting the access series. The 1685 protocol of PHG is not supported by Datafox.

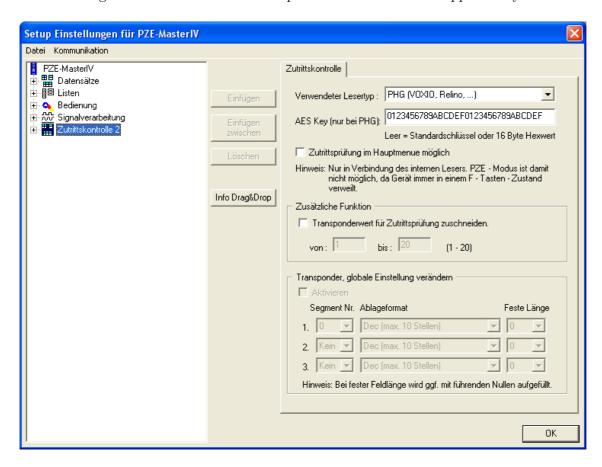


Figure 62: Communication key for the PHG-crypt protocol

The modules always work with encryption. If no code is entered, a not published standard code is used; otherwise, the entered user code is used. Please use all the 16 byte of the code.

All door modules that are compiled in the reader table have to be available in the RS485 network in order to guarantee that the code can be changed in all modules, if a new setup with a different code is loaded. If a door module from the list is missing in the bus, no change of the code takes place. The old setup with the old code has to be reloaded; otherwise, after rebooting the device it is not possible to communicate with the door modules until the right code is used again.

If a defective reader is replaced by a new reader that has not been used yet, the firmware recognizes this automatically at the start and sets up the encryption. The reader can also be changed during operation, the firmware automatically integrates it.

If you have forgotten the user code for a door module, there is no possibility to activate the readers. The reset of the forgotten key at the reader can only be done by PHG.

3.9 Status message of the access control

For the admission control following state messages are defined. The decimal values of the state message can be saved to every data record.

Display	Assigned status message	
0	Module recognised, everything is okay	
3	Module not defined in the list but found in the bus	
4	Module from the list not found in the bus	
5	Module wrong coding password	
6	Module wrong login password	
7	Module wrong reader type (Mifare, Legic, Unique, etc.)	
8	Module error while configuring the module	
9	Module neither found in the list nor in the bus (is not used)	
10	The communication key for the PHG-Crypt-protocol has been changed	
11	The communication key for the PHG-Crypt-protocol has not been	
	changed	

Table 19: Initialization / Communication

Display	Assigned status message	
20	Access granted for this card number	
21	Card number not contained in the identification list	
22	Card number blocked	
23	Time of validity of card number expired	
24	Room not contained in the location list	
25	No access during this time	
26	Awaiting PIN entry (green LED flashes)	
27	Entered PIN is invalid	
28	PIN with menace code was entered	
29	Entered PIN is OK	
30	Entered master PIN is OK	
31	Time-out for PIN entry	
32	Card number with general authorization	
34	Card number in the online mode read	
35	PIN in the online mode read	
100	Access control deactivated in the setup	
101	At the moment the access control cannot be called up (busy)	
102	Access control needs the lists	
103	Incorrect bus type (Datafox, PHG, etc.)	

Table 20: Access control

Display	Assigned status message
40	Digital output 1 is low (off)
41	Put digital output 1 on high (on)
42	Digital output 1 is trigger (on for given period of time)
43	Digital output 2 is low (off)
44	Put digital output 2 on high (on)
45	Digital output 2 is trigger (on for given period of time)

Table 21: Digital Output

Display	Assigned status message		
	GIS	PHG	
60	Digital input 1 is low	IO-Box closed	
61	Digital input 1 is high	IO-Box open	
62	Digital input 2 is low	IO-Box closed	
63	Digital input 2 is high	IO-Box open	
64	Digital input 3 is low	sabotage supervision -> communication	
		channel OK	
65	Digital input 3 is high	sabotage supervision -> communication	
		channel interrupted	
66	Digital input 3 was interrupted	PHG not used	
67	Digital input 3 was short-circuited	PHG not used	
70	not used	Digital input 1 reader low	
71	not used	Digital input 1 reader high	
72	not used	Digital input 2 reader low	
73	not used	Digital input 2 reader high	
74	not used	Alarm control panel -> state of device	
		OK	
75	not used	Alarm control panel -> device	
		manipulated	

Table 22: Digital Input

3.10 Bar code reader

If for the data transmission a communication different from RS232 is used, the RS232 interface (D-sub 9 pole) of the Mobil-MasterIV can be used for connecting a bar code reader.

The configuration of the bar code that is to read is done via the setup. The bar code reader is set with the help of the configuration code. The codes are provided on the Datafox CD.

You can connect all bar code readers which have a RS232 interface. Please note the pin assignment of the RS232 interface given in the table below.

Pin assignment for a bar code reader via RS232		
Pin	Bez.	Function
1		
2	TxD	Transmission data (connect to RxD of the bar code reader)
3	RxD	Received data (connect to TxD of the bar code reader)
4		
5	GND	Masse
6	+ 24V	+ 24 V supply 100 mA at most (solder bridge on edge connector necessary)
7		
8		
9	+ 5V	+ 5V Supply 150 mA at most

Table 23: Bar code reader over RS232

We use bar code readers of the company Datalogic by default and already make the right settings at delivery. You can find the corresponding bar code readers with the suitable cables in the price list.

Basic setting of the bar code reader Datalogic DLC-series for using it with the PZE-MasterIV.

With the basic configuration EAN8, Standard Code 39 and Interleaved 2/5 can be read. In order to make the basic settings read the bar codes 1.) RESTORE DEFAULT and 2.) RS232. If other bar codes are to be read, carry out the initialising according to the manual of Datalogic. A brief instruction is included in the cardboard of the bar code reader. The CD contains the whole manual "'Handbuch Datalogic_Barcodeleser.pdf"'.

3.11 Connecting Mobil-MasterIV with Timeboy

Figure 63: Anbindung eine Timeboy an den Mobil-MasterIV

When collecting vehicle data there is always the problem of assigning to persons, orders etc.. If there is a Timeboy in the vehicle Docking station, the vehicle data can be transmitted to the Timeboy promptly. But it is problematic, if there is no Timeboy in the Docking station during a drive.

Example:

Staff member A drives without plugging his/her Timeboy in the vehicle docking station. Later, staff member B drives the same vehicle with plugging his/her Timeboy in the Docking station. All data that are buffered in the Mobil-MasterIV are transmitted to the Timeboy of staff member B und therefore assigned incorrectly.

Solution:

A vehicle data record is expanded by two fields generally. In order to fill these fields with data, the Mobil-MasterIV has to communicate with a Timeboy. Therefore a Timeboy must be plugged in the Docking station. If there is no Timeboy in the Docking station, the data cannot be transmitted to these two fields and they are left unfilled. That way only those vehicle data are expanded by additional information for direct assignment, that where collected while a Timeboy was plugged in the Docking station.

3.11.1 Realization with Mobil-MasterIV

The Timeboy has to be activated as additional data source under "'Basic settings"' of the device setup (see figure 229). That means, the Timeboy provides GV as additional information of the vehicle data records. If this option is activated, it is polled to the vehicle docking.

3.11.1.1 Creating vehicle data

There are GV in the Mobil-MasterIV and in the Timeboy. If there is a Timeboy in the Docking station, the contents of the Timeboy-GV are copied to the GV of the Mobil-MasterIV and pasted in the additional fields of the vehicle data records. If there is no Timeboy plugged in the Docking station or if it is removed, the device-GV are emptied and the additional fields of the vehicle data records stay unfilled.

3.11.1.2 Transmission of vehicle data via Mobil-MasterIV

Figure 64: Data transmission via Mobil-MasterIV

The Mobil-MasterIV polls to the Docking station and checks whether there are data in the Timeboy that is plugged in. If there are data, they are transmitted to the Mobil-MasterIV and then sent to the PC via the device. The vehicle data are also transmitted to the PC via the Mobil-MasterIV.

Caution:

Please note that the timeout in the vehicle Docking station must be set to min. **500** ms. Otherwise, problems while transmitting may occur.

3.11.1.3 Transmission of vehicle data via Timeboy

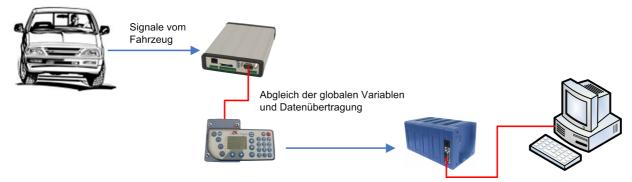


Figure 65: Data transmission via Timeboy

All vehicle data are transmitted to the Timeboy via the Mobil-MasterIV. In this case the Timeboy is used as data transmission medium. Then, all data are transmitted from the Timeboy to the PC via an ordinary Docking station (no vehicle docking).

4 DatafoxStudioIV - General operation

Note:

The dialogues can differ from the presentations in this manual, dependent on the version of the DatafoxStudioIV. This also applies to differences in functionality.

4.1 Installation

The DatafoxStudioIVis required for setting up and changing the device setup. The setup and communication program just consist of the files DatafoxStudioIV.exe and DFComDLL.dll. A real installation is not necessary. Just copy the files into the desired directory and create a link to DatafoxStudioIV.exe in the program menu or at the desktop.

System requirements

- ► PC with Microsoft Windows 95/98/NT/2000/ME/XP
- ► 64 MB RAM
- ▶ minimum 2 MB HD memory

Use

Caution:

If there are different versions of the DFComDLL.dll on the PC where the program DatafoxStudioIVis run, it can lead to malfunctions, because possibly a wrong version of the DLL is loaded by the program. Therefore, always pay attention to the software version and compatibility (see chapter 2.1).

User interface

Description of the main menu items

File: Open, save, create setup file

View: Hide and unhide status bar and toolbar

Setup: Basic settings like edit setup, import lists, set data storage, load firmware and device

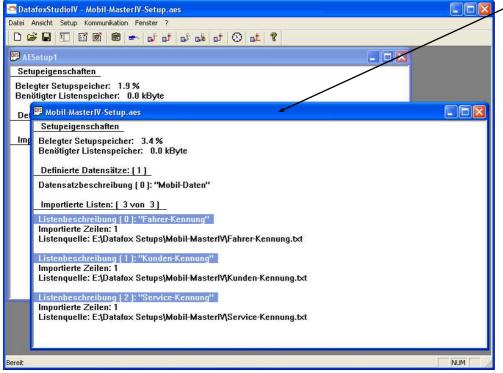
maintenance via modem connection

Communication: Setting of the communication, commands for a communication between the PC and

the terminal

Window: Set the order of the windows

? Information about the program and version requirements for the firmware and DF-


ComDLL.dll

The single functions are explained in detail in the following chapters.

4.2 Operation of the DatafoxStudioIV

All functions you need about the setup are available via the menu of the DatafoxStudioIV. The most important functions can additionally be called up via the toolbar.

Client-Window

The edition, e.g. writing setup, etc., always refers to the current marked window. The file name of the setup file is visible in the title bar.

Figure 66: DatafoxStudioIV User interface

As long as the setup-mask-dialogue is opened you have no access to other functions of the DatafoxStudioIV. Only if the dialogue is closed, you can call up and carry out other functions from the studio for the setup that is chosen currently.

Note:

Please take into consideration that, if several setups have been opened in the main window of the DatafoxStudioIV, the changes only refer to the currently chosen setup. This means the setup window which is not covered by another window.

4.3 Menu Datei

Under the menu item < Datei > are several standard functions that you know from other office applications and that are not examined further. Such functions are for example < Speichern > for saving changes.

4.3.1 Creating a new setup file

You can create a new setup file via < Datei => Neu >. A new client window will be opened in the DatafoxStudioIV. After creating a setup file you should save it under the name of your choice. After successfully saving the setup file the new file name will be displayed in the title bar of the client window. With that, the creating of a new setup file is finished. The setup now can be edited at will.

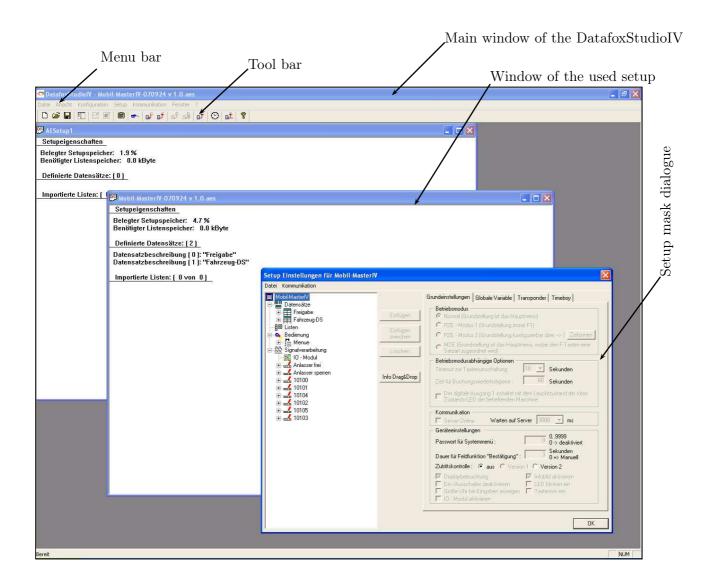


Figure 67: User interface of the DatafoxStudioIV

4.3.2 Open setup file

In order to open an already created setup file with the DatafoxStudioIV, click on < Datei => "Offnen> in the menu and select the directory that contains the file. Open the file with a double click on it.

Caution

You should note that if you open a setup file that was created with a previous version of the DatafoxStudioIV, the file is converted into the new setup format by the DatafoxStudioIV. Then, it is not possible any longer to open this converted setup file with the previous program version. The DatafoxStudioIV back-ups the setup file before converting it. The back-up copy has the file extension (*.bak). By renaming the file extension (.aes) you can open and edit it with a previous program version (AESetup).

4.4 Menu Setup

4.4.1 Edit

Via the menu item < Setup => Editieren > you reach the domain of the DatafoxStudioIV where you can edit a setup. You can find a more detailed description of the procedure in chapter 5.

Note:

By double clicking on the white surface of the window, this menu order is carried out as well.

4.4.2 Import lists

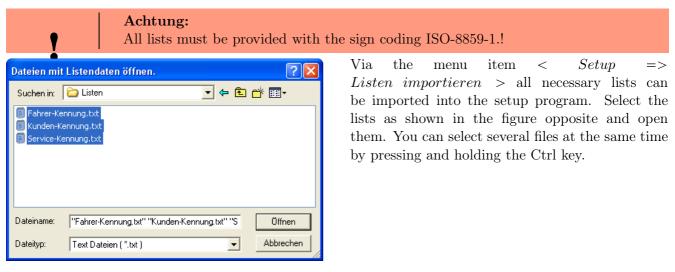


Figure 68: File selection dialogue for list import

All imported lists are displayed in the main window of the setup under the item $Importierte\ Listen$: $(n\ von\ m)$. The link to the memory location of the lists, paths and file names are saved with the setup. A selected list is only imported if it corresponds to the list definition of the setup (see chapter 5.2.7).

If a list definition was changed in a setup, all list have to be transmitted again after transmitting the setup to the device.

4.4.3 Import access control lists

The access control lists are defined in the setup with a fixed name and structure. The lists have to be selected and imported corresponding to these definitions. In order to import access control lists, proceed analogous to the list import (see chapter 4.4.2).

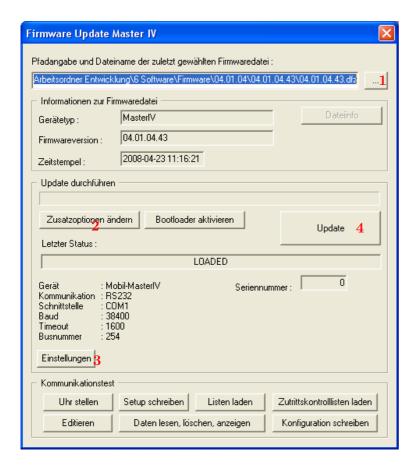
4.4.4 Configure data storage

Under the menu item < Setup => Datenablage konfigurieren > a dialogue opens where you can set how the read out data records should be saved.

You can define if an existing file should be overwritten or if the data shall be added to the file.

Furthermore, you can set the output format and define if and how field names should be used in the data files in order to be able to identify the field values more easily.

Figure 69: Configuration of the data storage



Caution:

If you read out data from several terminals and want to unite them into a single file, you necessarily have to activate the option "'Add data to file"' in order to avoid data loss. Otherwise, only the data of the terminal that was read out last are preserved.

4.4.5 Load firmware

You can make all necessary settings for a firmware update via the menu item $< Setup => Firmware\ laden >.$

You can select a *.zip archive which contains the firmware file (*.hex) for the Mobil-MasterIVvia the button (1).

Via the button < Zusatzoptionen "andern > (2) you can select the access series (TS/ PHG) you use. It is important that this is done **before** the firmware update, otherwise the wrong firmware (wrong access series) could be installed.

Before transmitting the < Einstellungen > (3) for the communication (kind of communication, timeout etc.) should be checked. If all settings are correct, the update can be started via the button < Update > (4).

Figure 70: Firmware update dialogue

In order to guarantee a faultless firmware update, the possibly connected machine should be tuned off during the update process.

Caution:

Please note at all costs the information under software versions and compatibility as well as firmware update/ downgrade in the chapters 2.2.1 and 2.2.2.

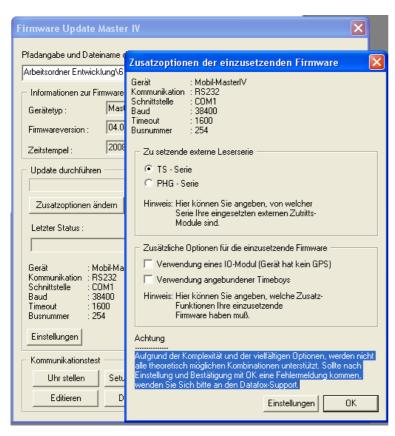


Figure 71: Additional options

With the Additional options you can define which additional functions have to be provided by the firmware.

This is especially important for the firmware updates from version < 04.01.04.32. In this case at first a firmware update with the version >= 04.01.04.32 has to be done. Only then the terminal can set the additional options.

Now set the additional options and apply them to the terminal by pressing OK. It is very important that now you do again a firmware update.

Only now, with the information from the terminal, the DatafoxStudioIV can select the appropriate firmware from the device file archive via the additional options.

4.4.6 Device maintenance via modem connection

It often happens that a Mobil-MasterIV is autarkically installed as data entry terminal at a machine or plant. In this case it would be very time-consuming to do a firmware update with direct connection to a PC. Therefore, it is possible to transmit data to the device or read them from the device via a modem connection.

All settings to take here, except for the PIN and phone number, refer to the configuration of the modem at you PC. That means, the external modem at the terminal has already to be configured for such a connection.

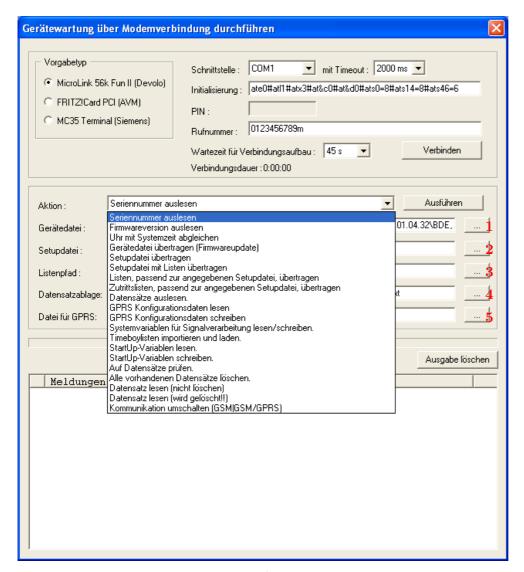


Figure 72: Device maintenance via modem connection

4.4.6.1 Functions for device maintenance

- ► Read out serial number
- ► Read out firmware version
- Compare clock with system time
- ► Transmit device file (firmware update) Via the button 1 in figure 72 a dialogue opens where you can select the device file with the extension "'.hex"'. When you have marked the file, you can take it over via the button "'Open"'.
- ► Transmit setup file Via the button 2 in figure 72 a dialogue opens where you can select the setup file with the extension "'.aes"'. When you have marked the file, you can take it over via the button "'Open"'.
- ► Transmit setup file with lists Via the button 3 in figure 72 a dialogue opens where you can define the folder (path) that contains the list files.
- Transmit lists matching to the given setup file Only the list data of the button (3) are transmitted here.
- Transmit access lists matching to the given setup file Here the access lists have to be assigned to the button (3)

- read out data records Via this function you can read out data records from the Mobil-MasterIV. Via the button 4 in figure 72 a dialogue opens where you can define the folder (path) in which you want to save the data records.
- ▶ Read GPRS configuration data Via the button (5) a dialogue opens where you can define the GPRS.ini. Just create a new file, name it GPRS.ini and select it. Now, the current GPRS configuration is read from the device and written into the *.ini file.
- ▶ Write GPRS configuration data Select the configuration file (GPRS.ini) that contains the desired settings via the button (5).
- ▶ Read/ write system variables for signal processing A selection dialogue opens where you can select the desired system variables of the digital inputs and then read or write them. See chapter 4.5.8.
- Import and load Timeboy lists The dialogue "'Import and transmit data of the lists of the Timeboy"' opens. See chapter 4.5.3.
- ▶ Read StartUp variables Via this function you can read out the StartUp variables.
- ► Write StartUp variables Via this function you can write StartUp variables.
- Checking for data records It is examined whether there are data records in the device.
- ▶ Delete all existing data records Deletes all data records from the device. This is absolutely necessary before you can install a new firmware or setup.
- ▶ Read data record (not delete) reads a selected data record without deleting it
- ▶ Read data record (is deleted!) reads a selected data record and then deletes it
- ► Switch over communication (GSM, GSM/GPRS)

Note:

In order to carry out the functions "'Transmit device file"' and "'Transmit setup file"', no data records must be on the device. In this case you first have to read out all data from the device (see chapter 4.5.4).

4.4.7 Edit text data of the firmware

From version 04.01.06. x you can edit the text data of the device firmware about DatafoxStudioIV. Open the edit dialogue about the menu < Setup => Textdaten der Firmware bearbeiten >. Open now an device file archive *.dfz. The Defaulttexte of the firmware with a description are indicated.

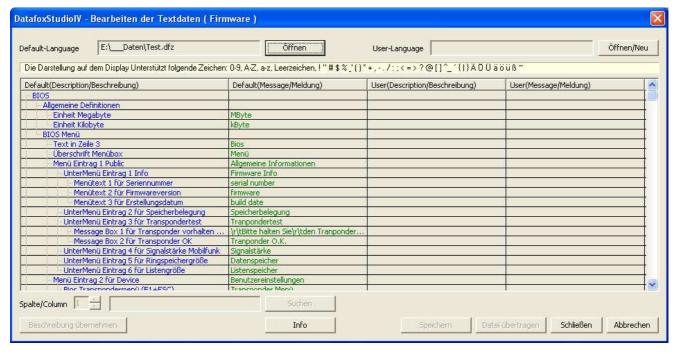


Figure 73: Default Text-Datendatei Öffnen

Open or generated now a new linguistic file for the firmware with the ending *.dfl. If you have generated a new file, the right side of the list is empty.

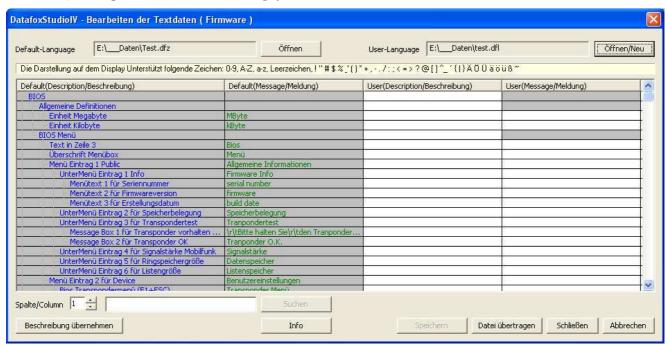


Figure 74: User Text-Datendatei Erstellen bzw. Öffnen

Innerhalb der Liste arbeiten Sie nur mit einfachen Mausklicks, KEINE Doppelklicks. Selectieren Sie mit einem einfachen Klick eine Zeile aus der Liste.

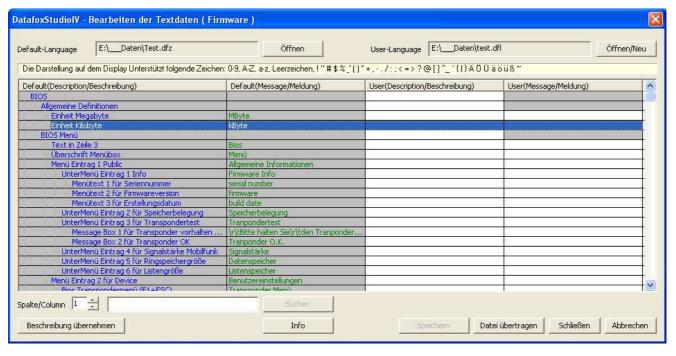


Figure 75: Zeile auswählen

With the next single click in the column of user(description/...) or user(message/...) you put the cursor in this field.

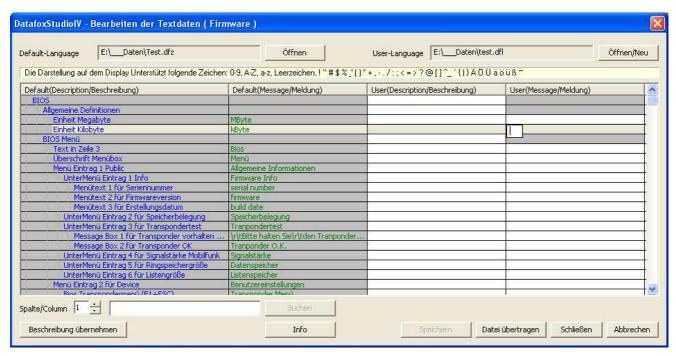


Figure 76: Zelle zum Bearbeiten auswählen

Now you can edit the text.

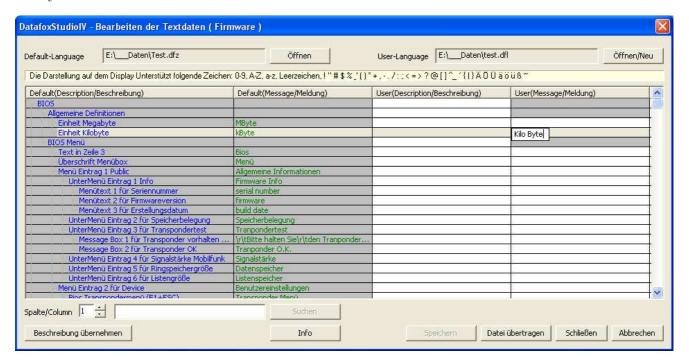


Figure 77: Textdaten eingeben bzw. bearbeiten

If you conclude the input, the description from the column default(description/...) is taken over.

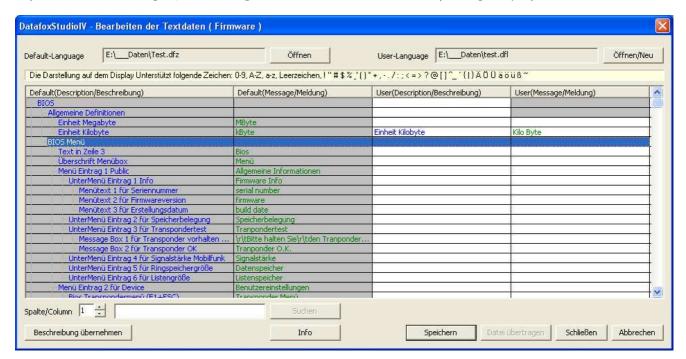


Figure 78: Änderungen übernehmen

You can change this text now in the column user(description/...). To transfer user to text data, they store all changes.

It is available to you a full text search. Give the text and choose the column which you would like to search for the text.

4.5 Menu Communication

Note:

You can and should check all displayed communication parameters at each dialogue that opens with one of the following function calls, and adjust them via the button Settings if necessary.

4.5.1 Write / read setup

When the setup is finished, back-up it on disk via $< Datei => Speichern\ unter >$. For transmitting the setup you have to set the communication parameter for the device in question via < Kommunikation => Einstellungen >.

Caution:

Always check the communication parameter before transmitting the setup. This is especially important when several devices are managed via the DatafoxStudioIV. Pay particularly attention to the IP address of the device to which you want transmit the setup.

The device is only ready for operation with a completely transmitted setup. If the transmission is aborted early, the device cannot be put into operation. In this case, a possibly existing disturbance source has to be eliminated and the transmission must be repeated.

Figure 79: Transmitting setup data

Likewise, a setup can be read out from the device in order to change it or to configure a second device with the same setup. Open the corresponding dialogue via $< Kommunikation => Setup\ lesen >$, give a file name for the setup and check the communication settings. With OK you confirm all entries and the setup is read out from the device.

4.5.2 Load lists/ access control lists

If devices are activated via the DLL, the lists can be directly transmitted from an application without previously creating an ASCII file.

Figure 80: Load lists

The loading of the lists trol lists is done via the function Listen laden Kommunikation =>the access control via < Kommunikation => $Zutrittskontrolllisten\ laden >$. This functions are also available in the DLL and can be used via own applications.

4.5.3 Import and load Timeboy lists

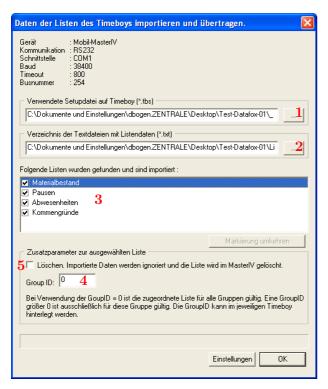


Figure 81: Import and load Timeboy lists

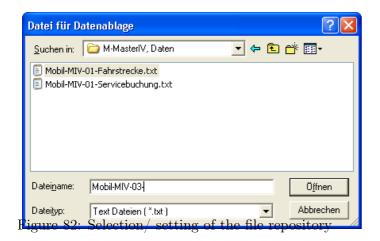
You can start the dialogue for importing Timeboy lists via the function < Kommunikation => Timeboylisten importieren und laden >. Here, at first you select the path to the desired Timeboy setup (1) and then the path to the Timeboy lists (2). The lists whose information matches the list description of the Timeboy setup are displayed now (3). You can define the Group ID (4) via the additional parameters and thus assign the special lists e.g. for certain fields of activities. The Group ID is logged on the Timeboy. Additionally, you can delete lists from the Mobil-MasterIV (5).

This functions are also available in the DLL and can be used via own applications.

4.5.4 Read, delete, display data

The setup program offers simple functions for reading out and deleting data from the device. Only ASCII files can be created. For different output formats the use of the communication DLL or Datafox-Talk is advisable. Please not chapter 2.3.2.

The respective formats and options for the filing of data in the ASCII file are set via < Setup => Dateiablage konfigurieren >, as described in chapter 4.4.4.


Caution:

In a network the option "'Add data to file"' (if this file already exists) has to be activated. Otherwise, at the download the data are overwritten by the following devices and only the data from the last device are available.

4.5.4.1 Read data and delete them

You can read out the data records from the device via the menu < Kommunikation => Daten lesen, l"oschen >. The reading out of the data records is done separately.

After the function call

< Daten lesen, l"oschen >, a file prefix for saving the data records has to be given. For each data record description of the used setup, an own text file is created for the existing data records. The file name consists of the given file prefix and the name of the data record description.

Example:

At the reading and deleting of data the files PZE-MIV-04-PZE-Meldung.txt and PZE-MIV-04-Zutrittsmeldung.txt are created if for all data record descriptions for the forth device PZE-MIV-04 is set as file prefix in the file selection dialogue and the data record descriptions "'PZE-Meldung.txt"' and "'PZE-MIV-04-Zutrittsmeldung.txt"' are created in the setup.

If you set the current date in the file prefix, you create a history of the data backup. The date in the form yymmdd, e.g. PZE-MIV-02-060514 would result in a chronological ordered back-up of the files.

If a file is newly selected or created, a query appears whether you want to use this file as standard filing for the data.

After opening the file a dialogue for reading out the data records appears. Via this dialogue the communication parameter have to be checked via < Einstellungen >. But above all the communication and the IP address have to be checked and set if necessary. The option "Pollen" offers the possibility to read out several devices permanently, this is also called collecting process, and to back-up the data on the local disk. The devices are read out one after the other here. Via the parameter "Time between the collecting processes" a period of time in seconds can be set as break between two read out processes, **not** between the reading out of two devices.

4.5.5 Set time

Via the function < Kommunikation => Uhrstellen > you can compare the time of the device with the system time of the PC from which this function is called.

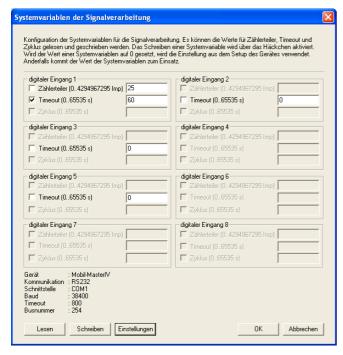
4.5.6 Read serial number

With the function < Kommunikation => $Seriennummer\ lesen >$ you can read out the number of a device. It is displayed via a separate dialogue.

4.5.7 Read global variables

Figure 83: Values of the read variables

Via the function "'Read global variable"' you can check which value has a global variable in the device.


Figure 84: Values of the read variables

At the function call all global variables are read out from the device and shown with their current value.

4.5.8 System variables of the signal processing

You reach this dialogue via < Kommunikation => System variable n der Signal verarbeitung >.

By clicking on "Read" you can read out the counter divisor, timeouts and cycles of the digital inputs.

Then, you can change the information by ticking it and apply it to the device firmware by clicking on "'Write"'.

You should note that, if the value of a system variable is set on "'0"', the settings from the setup of the Mobil-MasterIV are used. Otherwise, the entered value.

Figure 85: Dialogue system variables of the signal processing

4.5.9 Display state of the ZK-modules

Figure 86: Read state of the ZK-modules

Via this function it is possible to receive detailed information about the state of the access control modules. You can check, which modules of the access control have bee recognized by the terminal and which state they have.

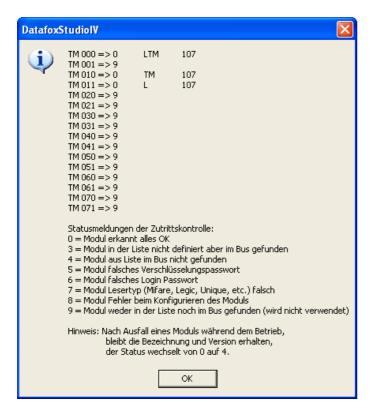


Figure 87: State of ZK-module

TM stands for Türmodul (door module), followed by the three-figure bus number. In the list the maximum number of modules that can be connected to the Mobil-MasterIV is shown. The next number indicates the state of the module. In the next column the type of the module is shown, L stands for Leser (reader), TM for Türmodul (door module) and LTM for Leser mit Türmodulfunktion (reader with door module function). The lower field contains a small legend of the status messages.

4.5.10 Work through batches

Via the function < Kommunikation => Stapel abarbeiten > the functions read data, delete data, set time, load setup, load lists and load access lists can be worked through chronologically. Further functions proceed automatically.

Figure 88: Work through batches

Depending on the activation/deactivation the respective functions are worked through.

After working through a reply for each activated function occurs.

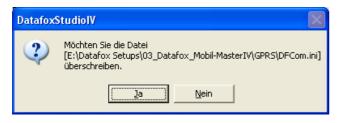
Pay attention to the selection of the related setup if you have activated the option "'Listen laden"' (load lists). If you have not opened the right setup an error in the list processing occurs. All other options are executed faultless.

4.5.11 GPRS configuration

[MODEM MC35i]

HOST = "'www.datafox.de"'

Corresponding to the data of your provider you can create a *.ini file for the GPRS configuration. The parameters that are necessary for the configuration of a GPRS/GSM connection are provided in the Inifile. The Ini-file has the following structure:
; Standard values for GPRS modem (MC35i)


; Phone no. for dial-in ; T-Mobile, Vodafone, O2, E-Plus PHONE = "'*99***1#"' ; Access Point Name ; t-mobile GRPS = "'internet.internet.t-mobile.de"'; vodafone GPRS = "'web.vodafone.de"' ; O2 GPRS = "'internet" ;Contract customer ; E-Plus GPRS = "'internet.eplus.de"' GPRS = "'internet.internet.t-mobile.de"' ; User name for internet dial-in ; t-mobile USER = "'td1"' ; vodafone USER = """; O2 USER = "'" ; E-Plus USER = "'eplus"' USER = "'td1"'; Password for internet dial-in ; t-mobile PASSWORD = "'"' ; vodafone PASSWORD = "'", ; O2 PASSWORD = "'", ; E-Plus PASSWORD = "'gprs"' PASSWORD = "'gprs"' ; Target configuration (port) PORT = 80; Target configuration (path) HTTPSEND = "'GET /oem/gprs/getdata.php?"' ; Period of time between 2 alive-data records ALIVE = 300; Period of time till the response of the server, otherwise disconnection ${\rm HTTPTIMEOUT} = 15000$; Protokoll-Typ HTTPTYPE = 1.1; Target configuration (server) ; Target-IP or host name ; HOST = "'192.168.0.1"

Via the GPRS configuration in the menu "Communication" you can read out the GPRS configuration data from a device, edit them and write them to a device or you can open an INI-file from your PC and edit it.

Figure 89: GPRS configuration

When you read out the data from a device, you have to set whether you want to overwrite the current file or write them to a now or another file.

Figure 90: Overwrite configuration data

When the GPRS configuration was successfully read out from the device, you can select whether the data should be edited or be saved in the set INI-file.

Figure 91: Reading of the GPRS configuration data

If you have confirmed the dialogue in figure 90 with No, you have to select another file or enter a name if a new file shall be created.

Figure 92: GPRS initialization file

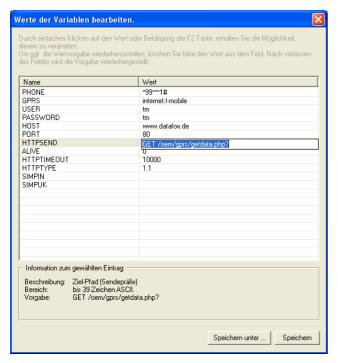


Figure 93: GPRS initialization parameter

In this dialogue you can edit the initialization parameter. Mark the line you want to edit by clicking on it. When the line is highlighted in blue, you can click on the selected parameter in the right column. An edit field opens where you can enter a new value. Additionally you receive information about the parameter. When all settings have been checked, the changes can be saved in the INI-file. Via the button *Speichern unter...* you can create a new initialization file.

When you have saved the data you can transmit them to the device via the dialogue in figure 89 with the button "'Write in device"'. After the transmission you receive a status message.

4.5.12 Device configuration BIOS

Because the Mobil-MasterIV has no keyboard and display, it is necessary to make all configurations concerning the device bios via a PC. For this purpose, connect the device to the PC via the RS232 interface. TCP/IP is possible as well.

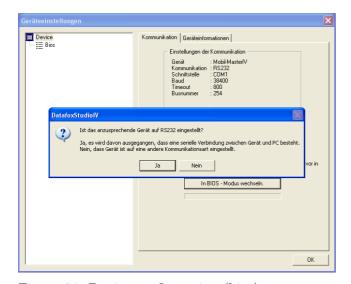
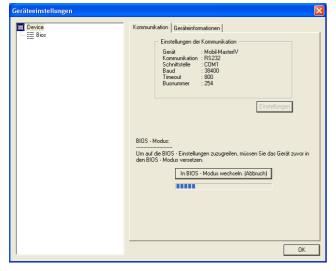


Figure 94: Device configuration (bios)


Check the settings of the communication parameter, type of device and communication. Open the dialogue for the device configuration (bios) via the DatafoxStudioIV menu *Kommunikation*. Click on the button "'Switch to bios mode". When the device is already set on RS232, confirm the query with "'Yes"'. Now, the bios mode is activated on the device. When another communication is set or the setting is unknown, confirm the query with "'No"'. In this case, remove the device from the power supply.

After having confirmed this message, you can reestablish the power supply for the device.

Figure 95: Activation of the bios mode

The blue progress bar displays the activation process. After the execution you receive a status message.

Figure 96: Activate bios mode at the Mobil-MasterIV

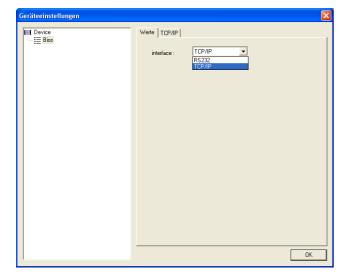
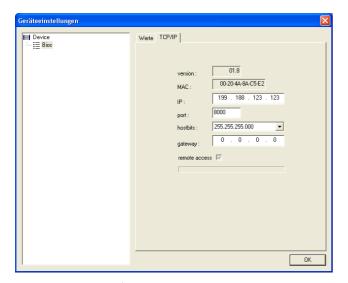



Figure 97: Device configuration (bios) - Interface

After a successful activation of the bios mode, all available interfaces for the main communication are displayed.

On the tab TCP/IP you can parameterize the IP address, network mask (hostbits), standard gateway and the option "'remote access"'. If a DHCP is in the network, the IP address has to be set on "'000.000.000.000"'. In this case the device obtains a dynamic IP address from the DHCP server.

Figure 98: TCP/IP configuration

Note for the option "'remote access"' that this parameter cannot be read out from the device. For this reason there are three states for the configuration. If it is ticked and active, the parameter is written in the device and "'remote access"' is activated. If it is not ticked the parameter is written in the device and "'remote access"' is deactivated. If it is ticked and deactivated (highlighted in grey), as shown in figure 98, the parameter is ignored and not written in the device.

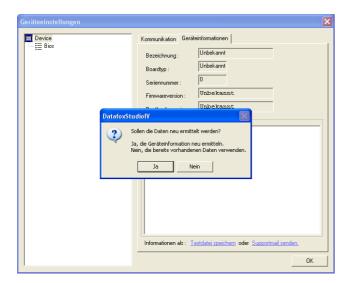
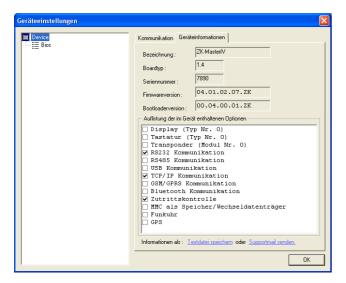



Figure 99: Device information

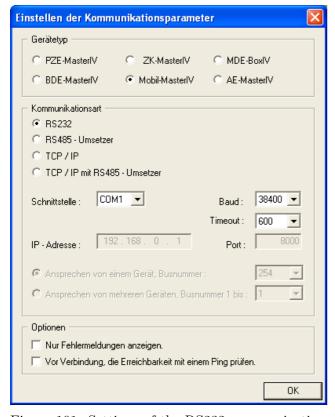
You also can receive information about the current hardware configuration via this dialogue. For this purpose, click on top on the right on device information.

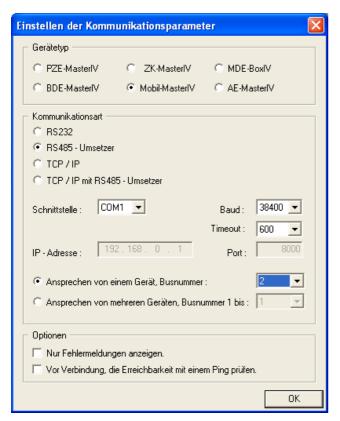
If you have confirmed the query in figure 99 with "'Yes"', the hardware information of the device will be read and displayed in the list. All available hardware options will be displayed there. The set options are ticked.

Figure 100: Show device information

4.5.13 Settings

Via the function < Kommunikation => Einstellungen> you can select the parameter for a communication between a PC and the Mobil-MasterIV. For all communications applies: at first select the device type. It can be set optionally whether only error messages should be output or whether the accessibility, should be checked via Ping before establishing a connection.




Figure 101: Settings of the RS232 communication

With the type of communication you set via which channel (transmitting medium) the communication should take place.

Dependent on the selected communication, the active parameter have to be set.

In case of RS232 the serial port (COM-Port), the baud rate (how many bits are transmitted within a second) and the timeout (time till the connection termination if no data arrive) have to be set.

For a communication via a RS485 converter, in addition to the information of the RS232 communication you have to set if one or several devices should be activated. For a communication with only one device the bus number of the device is set (see system menu bios in chapter 4.5.12). Several devices can only be activated in a consecutive order of bus numbers, starting with bus number 1, and by giving the bus number of the last device.

Figure 102: Settings of the RS485 communication via converter

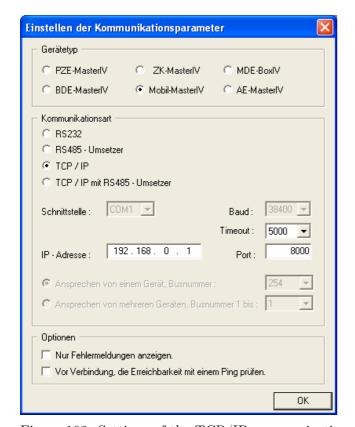
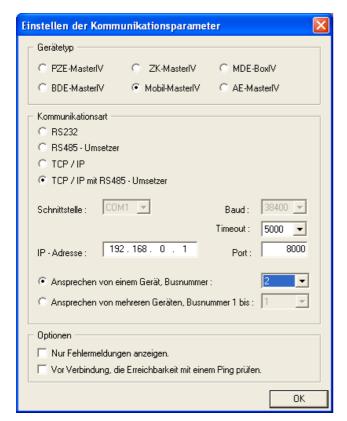



Figure 103: Settings of the TCP/IP communication

At a communication via TCO/IO the IP address of the Mobil-MasterIV, the communication port and the timeout (in msec) have to be set.

In this case, analogous to a communication via TCP/IP the parameter have to be set and additionally it has to be set if one or several devices should be activated. For a communication with only one device the bus number of the device is selected. Several devices can only be activated in a consecutive order of bus numbers, starting with bus number 1, and by giving the bus number of the last device.

Figure 104: Settings of the TCP/IP communication via RS485 converter

4.6 Menu Extra

Note:

You can and should check all displayed communication parameters at each dialogue that opens with one of the following function calls, and adjust them via the button Settings if necessary.

5 DatafoxStudioIV - Setup

5.1 Basics

5.1.1 Planning

Before switching on the computer and creating the setup, the process of data collection and the setup structure should be planned. Only a few steps are necessary to do that. If you do the preparations carefully you can create the setup very fast.

On the graphic you can see the connections between parameterisation and result data. You may find secondary project support in the form of models on the Datafox CD.

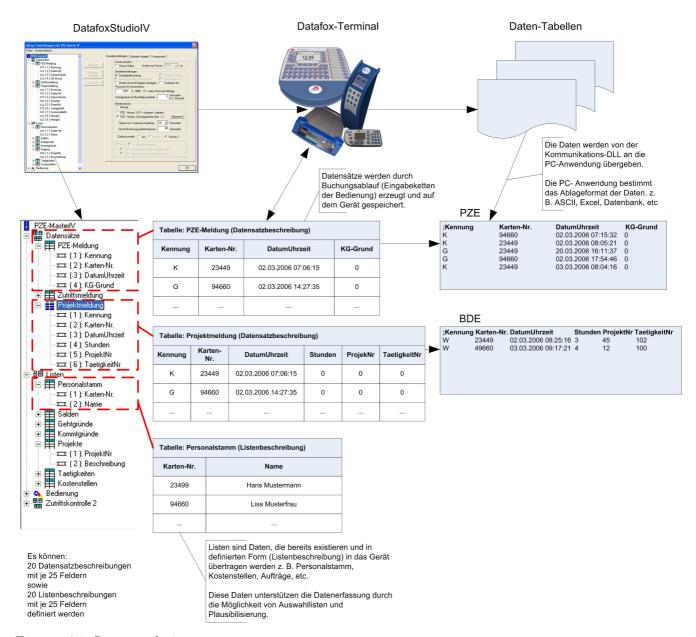


Figure 105: System relations

Planning steps

- ▶ Define all the tables for the data records that should be collected: field order, field name, field format
- ▶ Set the method of data collection for each field of a data record. In order to do this please use the operation (input chain fields):

 bar code, transponder, list, entering via keys, constants, global variables, etc. Combinations are possible
- ▶ In order to use lists you have to define this lists analogous to the data record descriptions: field order, field name, field format
- The most important step is the planning of the booking processes (input chains of the operation). To this step belong questions like this:
 - What is the best order to enter the fields?
 - Are loops or jumps labels necessary?
 - Are global variables necessary?
 - Are depending lists necessary? E.g. projects with specific occupations; if the project is selected, only the appropriate occupations can be chosen
 - Should the device switch off automatically after entering a data record?
 - **.**..

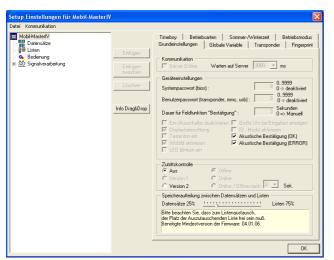
Note:

If the tree structure is very large, it might be arduous to open all the structures by clicking on it with the mouse. By using the following key combinations the tree structure also can be operated.

Shortcut	Funcion
* (on the keypad)	display all secondary files under the current selection
+ (on the keypad)	display the secondary files under the current selection
- (on the keypad)	fade out the secondary files of the current selection
↓	move down one position in the opened tree
1	move up one position in the opened tree
\rightarrow	open the following application level in a branch
←	close the complete branch

5.2 Functions of a setup

5.2.1 Basic settings



Note:

With the DatafoxStudioIV more than one device type can be configured. The functionality of the devices differs. Therefore it is important to select the device type at first. Only then it can be guaranteed that all functions are available while configuring and that they are not deactivated.

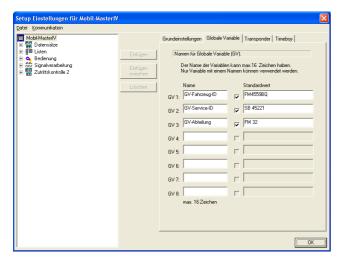
Depending on the chosen communication type some further settings have to be carried out. Please note, that all changes have to go well with the settings of the device (see chapter 4.5.13.

After setting the type of device and communication the basic settings, the global variables and the transponder settings of the device can be defined.

In the basic settings for the Mobil-MasterIV merely the access control can be activated or be deactivated. Other settings are not necessary.

Figure 106: Basic settings depending on the device

From version 04.01.06. x can be put how much of the device memory should be used for records and how much for lists.


5.2.2 Global variables

Global variables are used as buffers within the device and do not depend on a data type. That way it is possible to transmit values, created within an input chain, to another input chain for reprocessing. At most 8 global variables can be defined in the Mobil-MasterIV.

Already while defining, the global variables can be preallocated with values (in the basic settings of the device via the register card Global variables, see figure 107). It is also possible to fill them with values via input chains within the term. If you access to the same GV repeated, writing, via input chains, the value of the GV is changed.

$Manual\ Data fox\ Mobil-Master IV$

The use of global variables is explained in detail in chapter 5.3.1.

For testing purposes or also with the basic parameters (e.g. device-no.) it might be very useful, if the global variables are already preallocated in the setup.

Figure 107: Setting of global variables

When a global variable is filled via an input chain you have to differ to cases: Either you fill the GV and create a data record concurrently, or you fill the GV without creating a data record. In the second case please note, that there should be no connection to any data record description.

When inputting GVs using the function Normal, you can carry out a format check via the register card Expanded. Such a test is not available for other input functions. That is not necessary, because there the data formats are set in advance.

Note:

- When you transmit a new setup, it is possible to delete global variables and their values. In order to do this you have to activate the appropriate option.
- If you want to reset one or all GVs to a defined value (e.g. at clocking-off), you have to create an input chain with the appropriate fields. Use the function Constant. Via the configuration of the time zones you can set, when this input chain resets the GVs.

5.2.3 Transponder

Transponder readers are provided as external module, e.g. TS-TMR33. You can set the transponder reader via the settings in the setup (see figure 108.

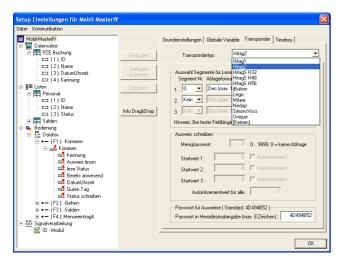


Figure 108: Settings of the transponder

When configuring the transponder please mind the provided information about the current transponder type.

The reading system is set via the transponder type.

At the moment the following transponders are supported by the Mobil-MasterIV Fields on the transponder					
125 KHz	Unique	TMR33,	Fixed 13-digit number	Only reading possible	
125 KHz	Hitag1	ProxLine	64 segments each 4 byte:	The available segments	
		MCR,	0 = Fixed number, only	can be used e.g. to save	
		PHG-Voxio	reading	a firm identification, a	
		oder	1 to 31 = Passwords,	card number, an	
		-Relino	32 to 63 = available.	account for canteens	
125 KHz	Hitag2	(Switch	8 segments each 4 byte:	etc. PHG supports at	
		over in	0 = Fixed number, only	most 3 segments with	
		DatafoxStudi	o FV ading	Hitag1 and 2, with	
			1 to 3 = Passwords,	Titan only the serial	
			4 to 8 available.	number.	
125 KHz	HitagS		1 - 63 available		
125 KHz	Titan EM4450		34 segmentes:		
			0 to 2 = Password		
			3 to 31 = available		
			32 to 33 Serial/Device ID		
13,56 MHz	Mifare	Mifare,	16 segments available	The high speed and the	
		PHG-Voxio		large memory capacity	
		oder		are also favourable. So	
		-Relino		this transponders are	
				very suitable for	
				biometry.	
13,56 MHz	Legic	Primo,			
		PHG-Voxio			
		oder			
		-Relino			
125 KHz	SimonsVoss	SimonsVoss	10-digital Number	Up to 8000 identity	
			1 to 5 = System number	cards (plus profile) can	
			6 to 10 = Key	be saved on one	
				SmartRelais.	
	iButton	iButton	Fixed 15-digital Number		

Table 24: Overview over supported transponders

Various possibilities of configuration are available for the DatafoxStudioIV, depending on the chosen transponder type.

5.2.3.1 Transponder reading systems

Read				
Type	Frequency	Module		
Unique	125 kHz	TSR20, TSR21, TSR30, TSR32, TSR33		
Hitag1	125 kHz	TSR21, TSR32, TSR33		
Hitag2	125 kHz	TSR20, TSR21, TSR30, TSR32, TSR33		
HitagS H32	125 kHz	TSR21, TSR32, TSR33		
HitagS H48	125 kHz	TSR21, TSR32, TSR33		
HitagS H56	125 kHz	TSR21, TSR32, TSR33		
Titan EM4450	125 kHz	TSR20, TSR21, TSR30, TSR32, TSR33		
Mifare	13,56 MHz	Mifare		
Legic	13,56 MHz	Primo		
iButton		Dallas Semiconductor DS9092		
SimonsVoss	25 kHz	SimonsVoss		
PHG	125 kHz sowie 13,56 MHz	Aperio, Relino		

Table 25: Transponder read

Write			
Type	Frequency	Module	
Hitag1	$125~\mathrm{kHz}$	TSR32	
Hitag2	$125~\mathrm{kHz}$	TSR30, TSR32	
HitagS H32	$125~\mathrm{kHz}$	TSR32	
HitagS H48	125 kHz	TSR32	
HitagS H56	$125~\mathrm{kHz}$	TSR32	
Titan EM 4450	$125~\mathrm{kHz}$	TSR30, TSR32	
Mifare	$13,56~\mathrm{MHz}$	Mifare	

Table 26: Transponder write

TMR33 supported by GIS:

Unique (Serial number)

Hitag1 (max. 3 segments)

Hitag S H32 (max. 1 segments)

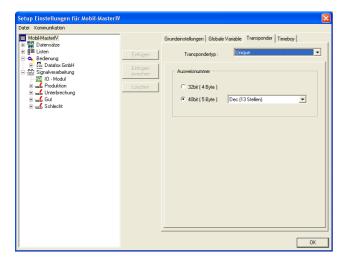
Hitag S H48 (max. 3 segments)

Hitag S H56 (max. 3 segments)

Hitag2 (max. 3 segments)

EM4450 (max. 3 segments)

Please note the following when using Mifare:


The value-format is not supported.

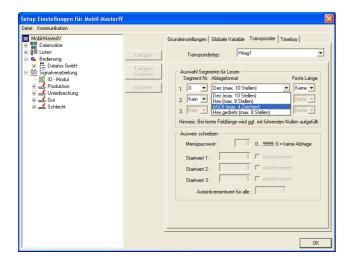
You can only read the data-format with the key-A.

You can read and write the default-format with key-A.

Unique

Unique is a pure reading system. The card number is a worldwide well-defined ID and is used in all conceivable fields. A 64bit information is saved on the card. For the well-defined ID only 40bits are used. The remaining bits are amongst other things used for a checksum. When using Unique in DatafoxStudioIV the value of the card number (ID) (as 40 or 32bit-value) can be used for further processing.

Figure 109: Unique transponder


Hitag1

Hitag1 is organized in 16 blocks at 4 segments each. Each segment has a length of 32 bits. The block numbers 4 to 7 can be saved with a password (secret) or used without one (public) optionally.

Caution:

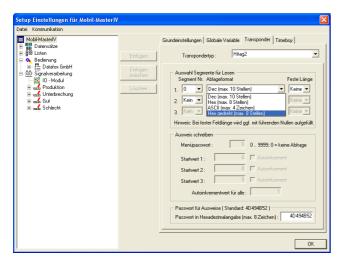
DatafoxStudioIV supports only the segments 0 and 8..63. The segments of 32..63 can be read and written always, the segment 0 can be read always. Depending on the content of the segments 1..7 it might be possible, that the segments 8..31 cannot be read or written.

At most 3 segments are available for concurrent processing. You can select them in the DatafoxStudioIV under Transponder via the segment number.

Via the filing format you set how the 32bit-value is used.

When you select Fixed length the read card value is cut to the set number of digits and is filled up with zeros (0) left-sided, if necessary.

Figure 110: Hitag1 transponder


For the writing of the cards an initial value per each segment can be set. You can activate the option Autoincrement value behind the current initial value. Then the current segment value is increased by the value indicated under Autoincrement value after every write operation. The initial values of the segments

can be edited in the device-BIOS. The set autoincrement value is only displayed in the device-BIOS and cannot be changed on the device itself. The writing of cards can be saved by a menu password.

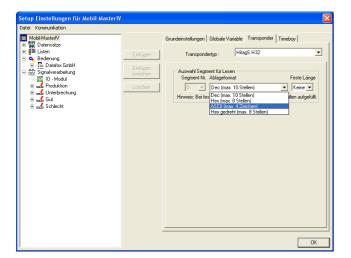
Hitag2

Hitag 2 is organized in 8 segments. Each segment is 32 bits long.

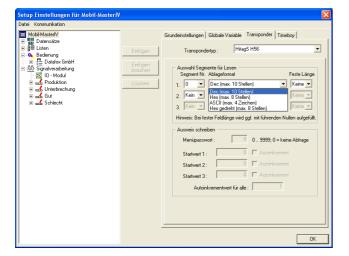
At most 3 segments are available for concurrent processing. You can select them in the DatafoxStudioIV under Transponder via the segment number.

Via the filing format you set how the 32bit-value is used.

When you select Fixed length the read card value is cut to the set number of digits and is filled up with zeros (0) left-sided, if necessary.

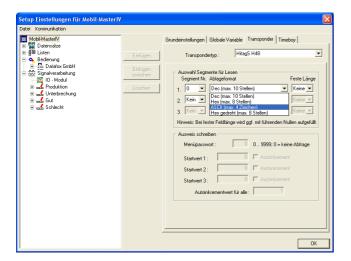

Figure 111: Hitag2 transponder

For the writing of the cards an initial value per each segment can be set. You can activate the option Autoincrement value behind the current initial value. Then the current segment value is increased by the value indicated under Autoincrement value after every write operation. The initial values of the segments can be edited in the device-BIOS. The set autoincrement value is only displayed in the device-BIOS and cannot be changed on the device itself. The writing of cards can be saved by a menu password.


HitagS

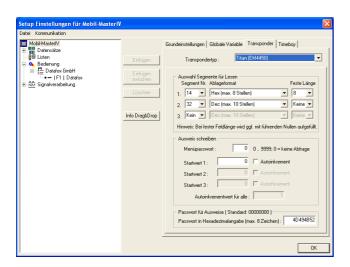
When using this method you differ between "'HitagS H32"', "'HitagS H56"' and "'HitagS H48"'.

HitagS H32 means, that this transponder has just a 32bit-value (= serial number of the card) (see Unique).


Figure 112: HitagS H32

The H56 means, that this transponder has 8 registers for a 32bit-value each, altogether 256 bit (see Hitag2).

Figure 113: HitagS H56



The H48 means, that this transponder has 64 registers for a 32bit-value each, altogether 2048 bit (see Hitag1).

Figure 114: HitagS H48

Titan

Titan (EM4450) is organized in 34 segments. Each segment has a length of 64 bits. You can find the serial number in segment 32.

At most 3 segments are available for concurrent processing. You can select them in the DatafoxStudioIV under Transponder via the segment number.

With the filing format you set, how the 64bit-value is used.

When you select Fixed length, the read card value is cut to the set number of digits and is filled up with zeros (0) left-sided, if necessary.

Figure 115: Titan EM4450 transponder

For the writing of the cards an initial value per each segment can be set. You can activate the option Autoincrement value behind the current initial value. Then the current segment value is increased by the value indicated under Autoincrement value after every write operation. The initial values of the segments can be edited in the device-BIOS. The set autoincrement value is only displayed in the device-BIOS and cannot be changed on the device itself. The writing of cards can be saved by a menu password.

Mifare

Mifare is organized in 16 sectors at 4 blocks each (each per 16 Byte). Each forth block is used to encrypt the data on the transponder. It is partitioned into a key-A and a key-B and contains a password (each 6 byte long) for write- and read permission as well as the access condition, the media types are defined in. Depending on the application, all blocks of a sector can be available either in default-format (i.e. the key-A is the read- and write protection key) or in data- or rather value-format (i.e. the key-A is the reading password and the key-B is the master key for reading and writing). At the moment the Datafox devices (up to version 4.1.4.xx) support only the default-format.

Legic

Legic is used only in the German speaking areas. Both spanned and unspanned memory cards are provided. On the unspanned memory card the data are read by means of position- and length indication. It is impossible to write on such memory cards.

On the spanned memory cards you have to set not only the length but also the segment, the data are read from.

iButton

iButton is a contact reading system. The iButton has only a serial number, which is read, when a contact between iButton and transponder takes place.

5.2.3.2 Function upgrading for Mifare transponders

5.2.3.2.1 General information

The function Autologin always works in this version. If no password is entered, the default password by Philips or Infineon is used. If a password is entered, at first a login as key A is carried out and if that fails, this password is used as key B. Autologin is active only for reading.

5.2.3.2.2 Global settings

Mifare

Three password groups are provided. Password group 1 is used for the global settings. Range 2 is freely available, range 3 can be used with the restriction, that here the passwords of the old card (for rewriting the Access Conditions Bits of the sector trailer in the BIOS menu) are logged.

For the ASCII-format the value with the given length is written on the card, a zero-termination is not written on the card. If there are any zeros within the given length, they are written on the card.

For the ASCII-format the value with the given length is read from the card, a zero-termination is added after the given length. Thus, the maximum length, possible for the card, used completely.

All Mifare standard cards can be used. When using 1kByte cards all sectors can be used, when using 4kByte cards only the first 16 sectors (out of 40) can be used.

Autologin function

In the previous version 04.01.04.xx the Autologin was active non-stop; only a few users knew this and used it. In the version 04.01.05.19 (and higher) the Autologin works in a different way. At activation all 6 passwords, that are given, are used until a login was successful. This function allows only the reading of the card with various passwords; when writing on the card the password has to be correct. If Access is used, the Autologin function cannot be used, because the access reader permits only one reading password for security reasons.

Access Conditions Bits

The Access Conditions Bits are logged on the sector trailer, the fourth block of a sector. Each sector can have its own password key A and B, also the access rights can be set for each sector and even for each block. The sector Trailer is structured as follows:

The sector Trailer cannot be read out via the setup functions. Only the blocks 0 to 2 are accessible in order to read and write data. The Access Conditions indicate the block format and the access rights of the block of a sector. The Value format is not supported by the firmware, but this can be set optionally. You should pay special attention to the Access Condition (B3), because the settings of the sector Trailer cannot be changed afterwards, it is write-protected then. If you are not sure, you should use the default settings of the producer.

!

Caution:

The Access Conditions Bits do not change the settings of the password use in the groups 1, 2 or 3. Here you have to pay attention, so that the settings correspond to the ACB. A set write-protection of the sector Trailer cannot be cancelled.

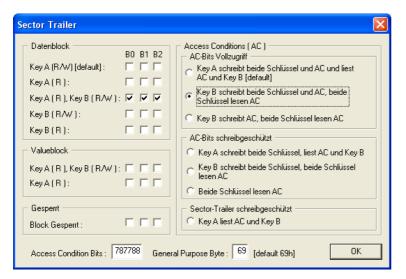

Sector Trailer	×
Datenblock 80 B1 B2 Key A (R/W) [default]: ▼ ▼ Key A (R): □ □ Key A (R), Key B (R/W): □ □ Key B (R/W): □ □ Key B (R): □ □	Access Conditions (AC) AC-Bits Vollzugriff Key A schreibt beide Schlüssel und AC und liest AC und Key B [default] Key B schreibt beide Schlüssel und AC, beide Schlüssel lesen AC Key B schreibt AC, beide Schlüssel lesen AC
Valueblock Key A (R), Key B (R/W):	AC-Bits schreibgeschützt C Key A schreibt beide Schlüssel, liest AC und Key B Key B schreibt beide Schlüssel, beide Schlüssel lesen AC Beide Schlüssel lesen AC
Gesperit Block Gesperit: Access Condition Bits: FF0780 Gener	Sector-Trailer schreibgeschützt C Key A liest AC und Key B al Purpose Byte: 69 [default 69h] OK

Figure 116: Sektor Trailer

Grundeinste	llungen	Glob	ale Variable		Transponder	
Fingerprint	Timeboy	Sor	nmer-/Winterze	eit	Betriebsmodus	
Methode der biometrischen Datenerfassung						
C Kein Fingerprint						
☐ Identifikation						
C Verifikation (Fingertemplates im Fingerprintmodul hinterlegt)						
C Verifikation (1 Fingertemplate auf dem Ausweis hinterlegt)						
 Verifikation (2 Fingertemplates auf dem Ausweis hinterlegt) 						
Es werden derzeit nur Karten vom Typ Mifare unterstützt. Ein Fingertemplate umfasst 161/216 Byte. Mehrere Fingertemplates liegen hintereinander.						
Segmen	nt: 1-7	▼	Passwortgru	ippe:	1 🔻	
Format de	Format der Fingertemplates					
Hinweis: Für den exakten Aufbau des Fingertemplates siehe Handbuch.						
© DIN V66400 (161 Byte)						
- Sicherheitsstufe						
Hinweis: Bei Identifikation ist der Wertebereich 50 - 60, bei Verifikation der Wertebereich 60 - 70 empfohlen.						
60 => FRR(0.075440), FAR(0.000030)						
— Mindestwerte für die Fingerakzeptanz						
Bildqualitä	it: 70	▼ ,	Anzahl Minutier	1: 20	•	

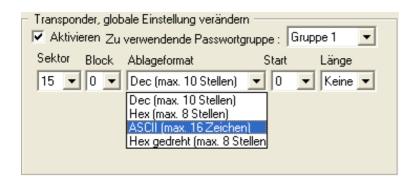
Figure 117: Example of a card

The ACBs (Access Condition Bits) should have a value of 78778869.

Figure 118: Sektor Trailer

Fingerprint Timeboy Sommer-/W	'interzeit Betriebsmodus					
Grundeinstellungen Globale Varia	able Transponder					
Transpondertyp : Mifare	•					
Globale Auswahl Sektor für Lesen/Schreiben Seriennr. Sektor Block Ablageformat Start Länge 1 1 Dec (max. 10 Stellen) 4 Keine						
Passwort Gruppe 1 (Standard) Für Lesen alle Passwörter Key A Key B FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Lesen / Schreiben Key A / Key A Key A / Key B Key B / Key B					
Ausweis schreiben						
Startwert: 1000 🗸 Autoinkr	Startwert: 1000 🗸 Autoinkrement, Wert: 1					
Access Co	Access Conditions : FF 07 80 69					
Passwort Gruppe 2	C Key A / Key A ⊙ Key A / Key B					
FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFF	○ Key B / Key B					
Passwort Gruppe 3 FFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFF	€ Key A / Key A⊜ Key A / Key B⊜ Key B / Key B					

Figure 119: Password definition



5.2.3.2.3 Function normal

New for this field function is the switching-on and -off of the acoustic signalisation. The background is, that the last access to the transponder shall create a beep, in case of carrying out several reading and writing processes within one input chain.

Figure 120: Behaviour after Barcode - transponder reader

On the field Mifare some alterations were carried out, so that now not only an ASCII string can be read, but also binary values (as already possible at other transponder processes). It is important, that the password group is set correctly, so that the data can be read.

Figure 121: Behaviour after Barcode - transponder reader

5.2.3.2.4 Transponder value write, also for Hitag1, Hitag2 and Titan

Only values of global variables can be written.

Note for the user: With Hitag several segments can be used. If these segments use different formats, the number of digits has to be set under Decimal (except for the use of only one segment). Otherwise, the data might be written on an other range than desired.

The page Expanded has the same structure as the one for field function Normal.

5.2.3.2.5 Transponder menu

The transponder menu is different only on the register card Mifare. The function Formatting sector was added to the hitherto existing functions/ menu items. The activation of this new function causes, that a card with key Ax and key Bx and its current ACBs is overwritten with the values of key A and key B of field 1 and with the ACBs of block 4, set in the setup. In order to carry out a login with the correct passwords, key Ax and key Bx have to be set in the password group 3. All this is important, if you want to create a new password for a card, that is new/ unused or even already used.

Terminals with fingerprint If the terminal is equipped with fingerprint and Mifare, the menu item "Fingerprint field sector trailer" is displayed in the transponder menu. Here the sectors, with the settings of the password section, edited under Fingerprint, are set. If Formatting sector is active, the passwords and the ACBs are set; if this option is deactivated, only the passwords are set. For the logging-in password the field 3 is used. The number of sectors, that are not accessible, is displayed at the end of the formatting

process. The reason for this are the different Access Conditions of the single sectors. Here the terminal will not help you. Such error sources have to be eliminated before, or you have to make sure, that the cards were not used yet. In that case such an error does not occur.

Conclusion If Formatting sector is deactivated, only the value is written on the card under Write card, on the fingerprint field Sector trailer only the passwords for the memory range of the fingerprint templates are set. If Formatting sector is activated, both passwords under Write card and block 4 of the segment with Access Conditions on the fingerprint field Sector Trailer are written newly. If the fields to be written are write-protected, an error message is displayed.

You may find further information about Mifare under http://www.mifare.net/ or www.nxp.com Products => Identification => MIFARE => MIFARE Classic.

5.2.3.3 Application possibilities for Hitag-transponder

All Hitag-transponders have got a fixed serial number in segment 0 and further available segments. You may find information about number, size and function in table 24. There is the possibility to use different segments. So you have several possibilities to use them with PZE and ZK. In the following you may find 2 examples for the possible use of PZE and ZK as well as the advantages and disadvantages.

Note:

You recommend the safer method with lists in the terminal. When using ZK lists they are necessary anyway.

Example 1.

Mobil-MasterIV setup for Hitag2 with firm code in segment 4 and personnel number in segment 5.

Operation:

The firm code is filed in segment 4. When reading the card a format check is carried out, e.g. 010101* for the customer ID 10101. The first 0 is created, because the fixed field length is 6. That means, even if the customer ID becomes a 6-digit number, the process still works.

The personnel number is filed in segment 5 (card number = personnel number).

Security is created by the firm code exclusively. Of course a further list could be loaded. But this would not be an improvement, because the clearness of the card number cannot be guaranteed.

The cards can be programmed via the terminal or the desktop reader TS-WR34_USBT article-no. 222001

Advantages:

No permanent staff lists have to be transmitted to the terminal.

Disadvantages:

Overlappings might be possible, if the firm code is not well-defined. That can happen, if you forget to set the setup for the project or if another producer uses the same method. Different accounting programs use different formats for the customer ID. The setup has to be set customer-specific.

- Under Transponder the project number/customer ID has to be input.
- The format check has to be set in each input chain.

Each card has to be programmed.

Example 2.

Mobil-MasterIV setup for Hitag 2 with card number in segment 0 and check on lists.

Operation:

Only the well-defined serial number (already programmed by the producer) in segment 0 is used.

Security is created by a check of the permanent staff lists (as standard with Unique).

Advantages:

The process is absolute safe because the well-defined serial number is used.

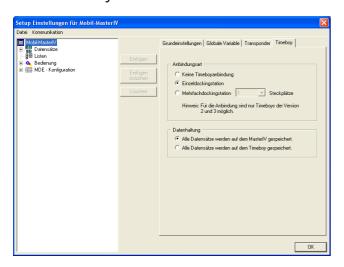
The setup does not need to be adjusted to each costumer, i.e. the same setup can be used for various projects/costumers.

The cards do not need to be programmed.

All free fields are available for other uses (canteen, drinks dispenser, firm equipment etc.).

While bookings are carried out, the name of the person can be displayed.

Disadvantages:


You have to load the lists, that should be controlled on the device compulsorily. (Alternative: This can also be done via an online check with the server application.)

Note:

Datafox offers a desktop reader with USB-connection to read the serial numbers into the PZE-software. By the keyboard emulation software the reader reacts like a keyboard. The cursor is put to the field Card number and the transponder is read. The number in the set segment is read and written to the position of the cursor.

5.2.4 Timeboy connection to Mobil-MasterIV

When you have activated the device type Mobil-MasterIVvia the communication settings of the DatafoxStudioIV, the register card Timeboy is displayed in the configuration dialogue.

On this page you have to set the type of connection and the position of data management. When you select the type Multiple docking station, you have to set the number of docking stacks in addition.

Figure 122: Activation of Timeboy connection

Caution:

If you select Multiple docking station as type of connection, only the GV of the Timeboy are used for accumulating the data records of the Mobil-MasterIV, that are in the first stack of the multiple docking.

Example

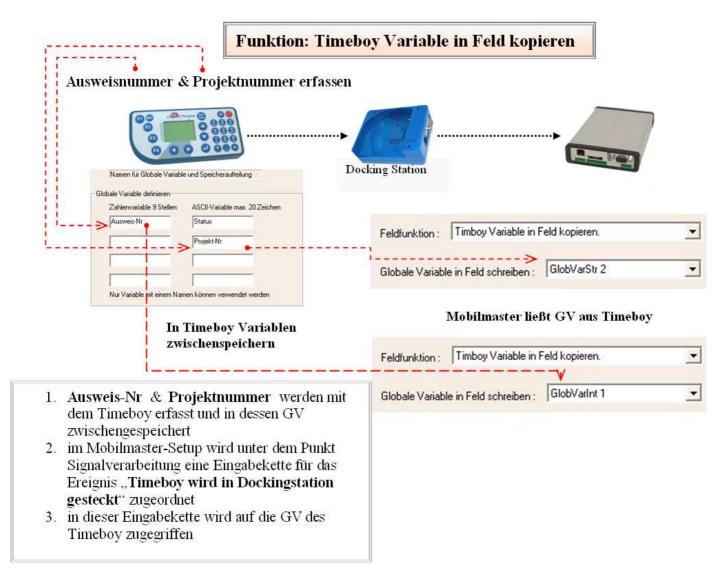


Figure 123: Timeboy variable in Field

Feldbezeichnung, entsprechend Status

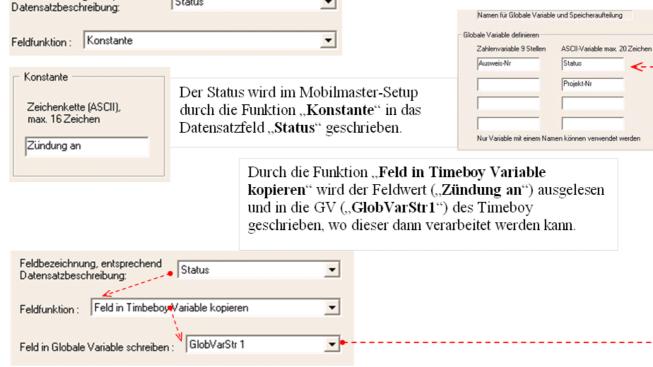


Figure 124: Field in Timeboy variable

Note:

Via the Timeboy it is possible to read out several information, e.g.

- ► status of Mobil-MasterIV(e.g. state of inputs/ outputs)
- ► PIN/PUK of the SIM-card logged on the device

or rather to set the PIN/PUK for the SIM-card or the counter splitter and to transmit them to the Mobil-MasterIV, which does not have a keyboard. In order to realize this, you need an appropriate input chain in the Timeboy setup. That way installing in vehicles is eased. You may find further information in chapter 3.2.2.1.

5.2.5 Operating modes of the Mobil-MasterIV

In order to satisfy the manifold application purposes of the Mobil-MasterIV, the operating modes were developed. Here you set, where the Mobil-MasterIV is used. The following modes are available:

Stationary Operation (1)

This operating mode is intended for the use with fixed locations only, e.g. the collection of machine data or also for access control systems. The Mobil-MasterIV is connected to the 230V mains supply via a device power supply. All components of the Mobil-MasterIV are put into operation forthwith after booting.

Mobile operation (2)

This operating mode is intended for the use in vehicles. Here the Mobil-MasterIV is always in use. Via Digital input for Start/Stop ((4)) the input is selected, that checks the ignition reactions (ignition on/off). If Ignition-off is selected, the device is in sleep-mode, the GPS-module is activated cyclically. If a coordinate-variation or a velocity > 0 is found, a data record can be sent. If Ignition-on is selected, the GPS-module is deactivated and not able to send data. Now the firmware identifies the starter process of the vehicle via voltage drop when starting the starter. Then GPS and GSM are activated completely. When the vehicle release ((5)) is activated, it is necessary to use a Timeboy with the appropriate setup to release the Mobil-MasterIV. If you use the active vehicle release, you have to differ One-way-ticket and continuous operation. If One-way-ticket is activated and the motor is stopped, another release input chain has to be set on the Timeboy, before the ignition can be started again. This is necessary, because the release status is reset forthwith, when plugging into the docking station.

If the continuous operation is activated, this release input chain does not need to be carried out again in the Timeboy. The GPS interval ((6)) indicates the interval, in which a GPS coordinate shall be created. Under valid GPS data, carry out input chain ((7)) an input chain can be assigned, which is carried out, when a valid GPS signal is identified. This is important, because the GPS module needs some time for booting. On the first meters of the tour invalid coordinates can be delivered.

Mobile operation with power off (3)

This operating mode is intended for the use in older vehicles (with low batteries) and longer immobilization times. Via this mode you want to avoid that the Mobil-MasterIV discharges the car battery completely while immobilization times. Therefore the appropriate relay of the Mobil-MasterIV has to be selected under Digital output for power off ((8)). In order to avoid that data records get lost, e.g. via unintended stalling the engine, you have to set the period (in hours), the device waits till power off under Switch-off delay ((9)). The settings of the vehicle release and the assignment of the digital input for start/stop are identical to the settings of the mobile operation without power off.

Caution:

When using the mobile operation (with and without power off), the GSM/GPRS access is set after the starter process to save power.

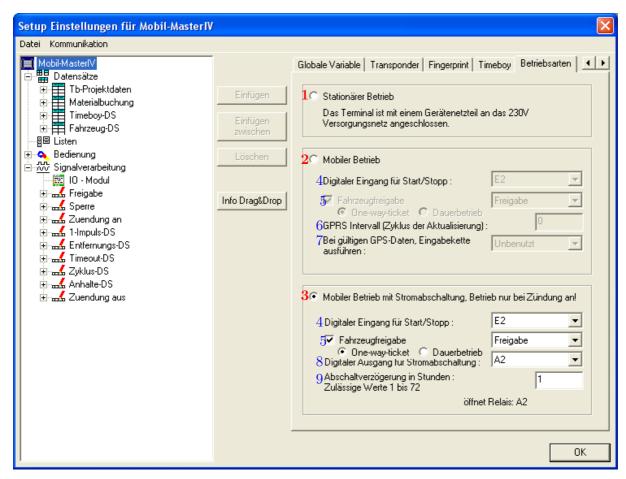
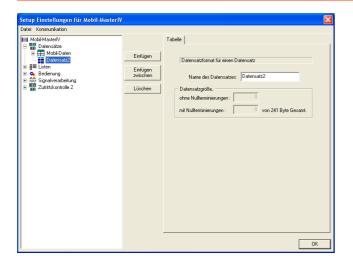


Figure 125: Betriebsmodi

Caution:

In the mode of Mobile operation with power off the communication with the Docking is monitored. If a recognised communication error cannot be corrected by the Mobil-MasterIV, the selfposition is solved. Thereby becomes the whole system resetet.


5.2.6 Creating data record descriptions

Caution:

When creating data record descriptions please note the following restrictions:

- At most 25 data fields are admissible per each data record description.
- The field length of date and time is set in advance by the format fix.
- Numeric character fields and ASCII-fields with a firmware release smaller than 04.01.03 are limited to 20 characters, the following firmware versions can save up to 40 characters in the fields.
- The total length of a data record is limited to 230 byte.
- At most 20 data record descriptions can be created.

When creating new data record descriptions under the element Data records please proceed as follows. Select the element Data records in the tree structure (it is highlighted in blue then). Via the button Paste a new data record description is created; the tree structure is expanded to a new entry. If several data records exist you can set the position of the new data record via the button Paste between.

Figure 126: Creating a data record description

In order to name the new data record, click on it in the tree structure. On the right side the details about this data record are displayed. There you can enter the new name.

Note:

All entries are applied automatically and do not need to be saved explicitly. Via the button OK you leave the edit dialogue and return to the setup dialogue.

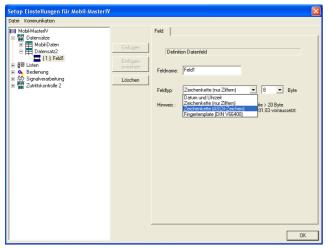
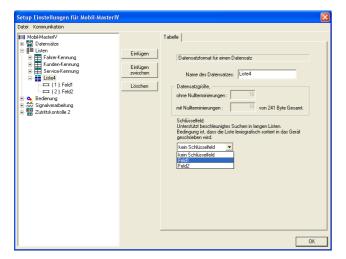


Figure 127: Creating data fields

For each data record appropriate data fields can be created and the field characteristics can be defined. This procedure is the same as when creating new data records.

The data type Date_Time is defined with a fixed length. When using strings you have to give an indication of length additionally.

5.2.7 Creating list descriptions


Lists provide a defined data base. You can compare them with the combo-box of a PC application.

!

Caution:

When creating list descriptions please note the following restrictions:

- At most 25 data fields are admissible per each list description.
- Numeric character fields and ASCII-fields with a firmware release smaller than 04.01.03 are limited to 20 characters, the following firmware versions can save up to 40 characters in the fields.
- The total length of a data record is limited to 242 byte.
- At most 20 list descriptions can be created.

Creating and defining list descriptions with data fields is carried out analogously to the creating of data record descriptions, under the element Lists in the tree structure (see also chapter 5.2.6).

In addition you can set a list field as key field. That way searching in long lists is expedited.

Figure 128: Listenbeschreibung erstellen

The fields under the item Data size, which cannot be edited, indicate the size of a list entry, with and

Manual Datafox Mobil-MasterIV

without end identifier (zero-termination) per each field.

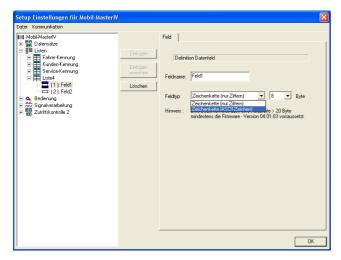


Figure 129: Creating list fields

Only the options string with numeric characters or rather string with ASCII-characters are available for a list field.

Here you also have to set the maximum length of the string.

5.2.7.1 Creating and importing lists

1.) Creating lists

If you want to work with logged lists, the user has the possibility to select particular data of a list and to transmit values to input chains. In that case the lists have to be defined in the setup and to be available as ASCII file or as text file.

Note:

If you want to import a list as *.txt file, the beginning of the file has to correspond to the name of the list description in the setup. If they do not correspond, the *txt. file is not identified as list. In order to differentiate several lists you can expand the file name, e.g. list description in the setup is Gehtgrund and the name of the list file is Gehtrund-PZE-MIV-02.txt.

According to the list definition in the setup, the list fields are separated from each other via the tabulator. In order to create lists you can use the characters A-Z, a-z and 0-9. Other characters are inadmissible. The maximum length of each field depends on the field length defined in the setup.

2.) Importing lists

Via the menu item < Setup => Listen importieren > all necessary lists are imported to the setup program. The imported lists are displayed in the main window of the setup under the point Importierte $Listen : (n \ von \ m)$. The link to the memory location of the lists, path and file name are saved with the setup. Please note, that only those lists can be imported, that are compatible with the list definitions of the setup. Otherwise the links are deleted and new compatible lists have to be imported. For this reason an edited list should be imported again to make sure, that it is compatible with the list definition.

Note:

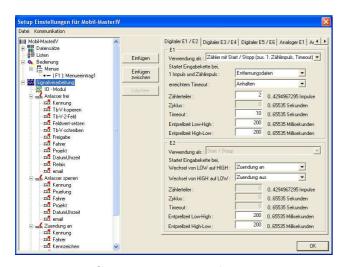
When transmitting a setup, the lists are formatted on the device (according to the new setup). For this reason you have to import and to transmit the lists again to the device together with the setup after editing a setup.

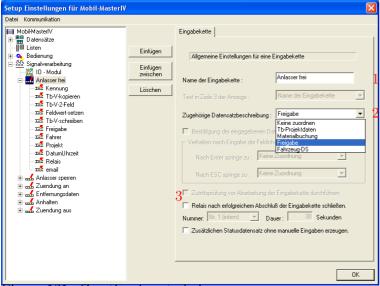
5.2.8 Creating a user guidance

As explained in chapter 3.4 operating the terminal via keyboard is impossible. Therefore the Mobil-MasterIV does not possess a actual main menu. Nevertheless you need an input chain (with the appropriate logic) to carry out access controls.

5.2.8.1 Menu and menu items

The operation of the Mobil-MasterIV can be created individually, depending on the application. Initial point of the whole operation is the main menu (1) as highest level (Root) (depending on the Mobil-MasterIV type).




Figure 130: Creating a user guidance

For operating the Mobil-MasterIV a process for creating vehicle data records has to be created. There is no actual main menu. This process is carried out automatically, whenever a signal is registered on a digital input of the Mobil-MasterIV.

5.2.8.2 Defining input chains

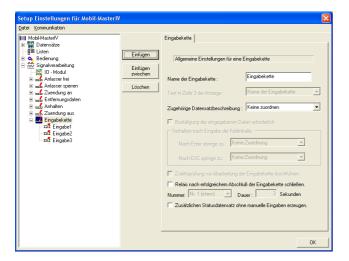
An input chain defines a series of data fields that are entered on the device or filled automatically via collection- or control routines. Via this input chains the data records are filled by the device (see chapter 5.2.6. If several input chains are created under one menu item, they are worked through one after another.

After creating an input chain and setting a designator(1), it has to be assigned to a data record. This is done via the field with the appropriate data record description (2).

If no assignment is defined at this point, no data record is created. It is reasonable, if the input chain is only used for defining a GV (as explained in chapter 5.2.2.

Figure 131: Creating input chains

In order to activate the access control before working through the input chain (3), you have to select access control 2 (in the basic settings of the device under operating mode).



5.2.8.3 Defining input fields

Note:

All inputs always apply to the input field selected in the tree structure.

After adding the input chain fields by pasting the input chain, these input chain fields can be configured. Paste the input chain fields

Figure 132: Einfügen der Eingabekettenfelder

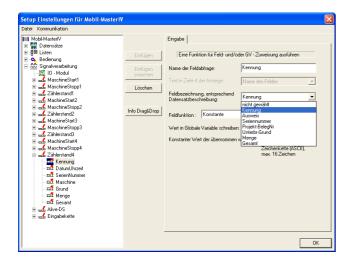
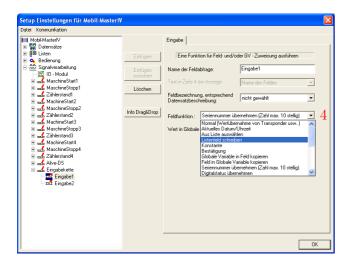



Figure 133: Konfiguration der Eingabekettenfelder

A data record description is assigned to the input chain (to save the data). You have to assign the input chain fields to the appropriate field of the data record description analogously. Data type and size of the data, that shall be processed, is set via this assignment.

Nun müssen Sie noch dem Eingabekettenfeld die Erfassungsfunktion für die Daten zuordnen. Diese Funktionen legen fest welche Daten, in welcher Form in das Feld übertragen werden.

Figure 134: Zuordnung der Erfassungsfunktion zu einem Eingabekettenfeld der Zutrittskontrolle

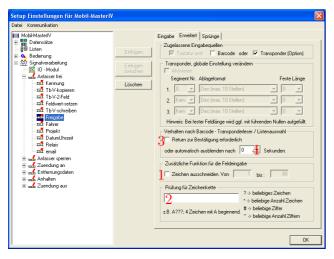
The following input functions (4) are available:

5.2.8.3.1 Field functions in general

- Normal = Input via keyboard, bar code, transponder or smart card.
- ► Current date time
- ► Select from list = In order to do this an assignment to a defined list has to occur. You may find a detailed description in chapter 5.2.7.
- ▶ Write list field = The value of a GV can be written on a selected list field via this function.
- ► Constant = The field is filled with a constant value.
- ► Confirmation = No data field is created but a stand-by position, e.g. to collect beginning and end of an occupation with two date_time fields. In front of the next field a stand-by position in form of a confirmation is pasted (see also the notes in the caution-box in chapter 5.2.8.2.
- Copy global variable to field = The value of the current global variable is copied into this field.
- Copy field into global variable
- ► Apply serial number (10-digit number)
- ► Apply analogous measurement
- ► Apply digital measurement (16-digit number)
- ► Apply counter reading
- ► Apply function value
- ► Apply threshold status
- ► Apply GPRS Alive counter

Manual Datafox Mobil-MasterIV

- ► Apply firmware version (xx.xx.xx.xx)
- ► Apply status of summer-/wintertime (S/W)
- ► Apply GPS data (27-digit RMC)
- ► Apply GPS data (variable selection)
- ► Copy Timeboy variable to field
- ► Start/Stop Timer
- ► Carry out access control with GV = You can carry out an access control within an input chain.
- ► Switch relay
- ► Apply debug value


5.2.8.3.2 Field functions of the access control

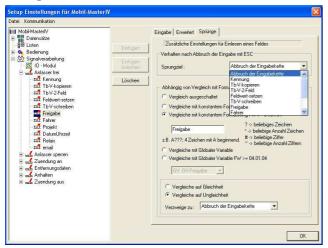
- Access: apply ZM (AccessMaster) = The value of the ZM is applied from the reader list.
- Access: apply TM (DoorrModule) = The value of the TM is applied from the reader list.
- Access: Apply card number = The read card number is applied.
- Access: Apply status = The basic status of the initialized ZK-bus and of an action carried out is applied

5.2.8.4 Expanded

You can use the cutting of the field values and the check against a reference string as expanded configuration. Further options are not available.

On the register card Expanded the option Cut out character of (1) is activated and the field part is set by setting start and end position of the fields to be read. Additionally a format check for string (2) (with a set format) can be carried out here.

Figure 135: Expanded


5.2.8.5 Reaction on list selection

- ▶ If you tick off Return necessary for confirmation (...), the list is displayed until a selection is made (in case of a list selection).
- (no tick) Timeout 0 (...). The first found list input is applied without being displayed. Please be careful in this case!
- ▶ (no tick) Timeout >0. The list is displayed. You can select a list input by scrolling and apply it via ENTER. If no acceptance occurs via ENTER, the selected list input is applied automatically after the set time.

5.2.8.6 Jumps

This field is available, if one of the following input functions is selected: Normal, Select from list, Write list field, Confirmation, Copy GV/Timeboy variable to field, Copy field to GV/Timeboy variable, Fingerprint: scan/ teach-in fingers/ delete finger templates/ carry out identification/ carry out verification or apply debug value.

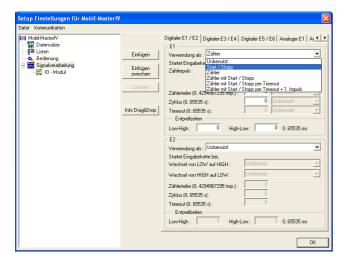
You can define jump targets within the input chain for ESC or depending on a check (if this function is available).

Figure 136: Defining jumps

5.2.9 Signal processing

Via the signal processing the digital and the analogous inputs are supervised and the digital outputs controlled.

5.2.9.1 Use as Start/Stop


Note:

In principle it is valid:

The (odd) digital inputs 1, 3 and 5 can be used with at most 1 kHz; the (even) inputs 2, 4 and 6 with at most 10 Hz.

When using as Start/ Stop a single digital input is allocated. It is appropriate to use the slower 10 Hz input for this.

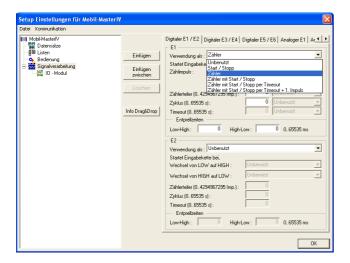
When using as Start/Stop an edge change (High to Low or Low to High) is interpreted as a valid signal, only if the signal level is over the period of time set as debounce time. Then the assigned input chain is started once only. This function you can use e.g. to supervise a machine. E.g. edge change from Low to High: The input chain Production could be called up once only. Edge change from High to Low: The input chain Interruption would be started.

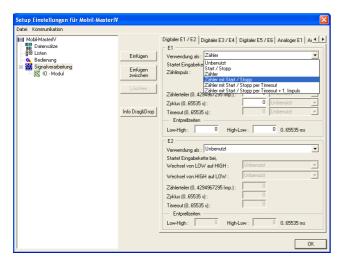
Figure 137: Use as Start/Stop

The cycle indicates the interval, in which a data record is created (irrespective of an impulse). The input chain, selected in the started/stopped machine is carried out cyclically.

5.2.9.2 Use as counter

When using as counter a single digital input is allocated. It is reasonable to use the faster 1 kHz input for this. For this please note the following:

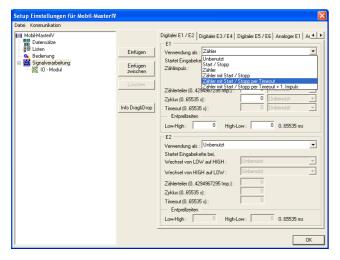



Figure 138: Use as counter

A valid counting impulse starts the assigned input chain. The counter splitter indicates, how many single impulses can be combined into one counting impulse. This value can be between 0 and 4.294.967.295. The cycle indicates the interval, in which a data record is created (irrespective of an impulse).

5.2.9.3 Use as counter with Start/Stop

When using as counter with Start/Stop two digital inputs are allocated. The faster 1 kHz input is used as counter and the slower 10 Hz input as Start/Stop.



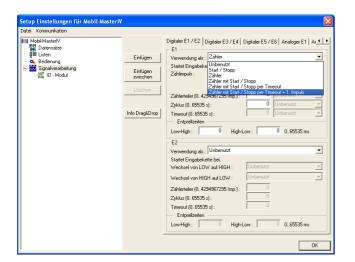
Both inputs are configured according to their use (see figure 138 and 137. Here you also have to pay attention to the debounce time for a defined signal level.

Figure 139: Use as counter with Start/Stop

5.2.9.4 Use as counter with Start/Stop via timeout

When using as counter with Start/Stop via timeout a single digital input is allocated. It is reasonable to use the faster 1 kHz input for this, because it also functions as counter.

The counter for produced pieces is the signal for a running machine concurrently. In order to notice interruption or switching-off of the machine the timeout is supervised. When the timeout has run out without registering a counting impulse, an interruption data record is created. The timeout is put back after each impulse (change from Low to High), that fulfils the conditions of the debounce time.


Figure 140: Use as counter with Start/Stop via timeout

The cycle indicates the interval, in which a data record is created (irrespective of an impulse). It is activated after the first impulse and deactivated after reached timeout. The cycle carries out the input chain for Start and counting impulse.

5.2.9.5 Use as counter with Start/Stop via timeout and 1st counting impulse

When using as counter with Start/Stop via timeout and 1st counting impulse a single digital input is allocated. It is reasonable to use the faster 1 kHz input for this, because it also functions as counter. Furthermore it is possible to create a data record with the first counting impulse.

The input chain, assigned to first impulse and counting impulse, is started with the first impulse (change from Low to High) and then according to the counter splitter. The counter splitter indicates, how many impulses are necessary to activate the assigned input chain. The input chain is not carried out, if 0 is indicated.

If no further impulse is detected within the time of the timeout, the input chain for the timeout is started. A further impulse restarts the input chain of the 1st impulse.

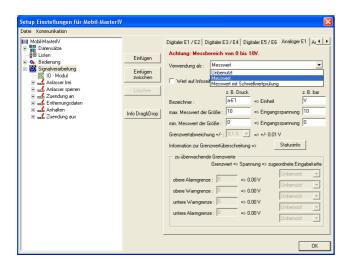
Figure 141: Use as counter with Start/Stop via timeout and 1st counting impulse

The debounce time indicates, how long the signal level has to remain unchanged to be detected as impulse. This is valid for both the change of level from Low to High (starting a device) and the change of level from High to Low (stopping a device).

The cycle indicates the interval, in which a data record is created (irrespective of an impulse). When stopping the machine the cycle is deactivated (as far as the machine status is Start).

5.2.9.6 Analogous inputs

Analogous inputs of the MasterIV series are designed for a voltage range from 0 V (= 0%) to 10 V (= 100%) DC.


The analogous inputs can be used either as measurement or as measurement with threshold check. Additionally the measurement can be displayed explicitly, when using devices with an information page. The sampling rate indicates the interval, in which the voltage parameter is called up at the input.

Caution:

Please pay attention to the provided information of the used transmitter. The voltage range of the transmitter has to be set as minimum and maximum input voltage in the configuration dialogue of the analogous input. The appropriate minimum and maximum measurements of the transmitter have to be assigned to these voltage parameters according to the manufacturer's instructions.

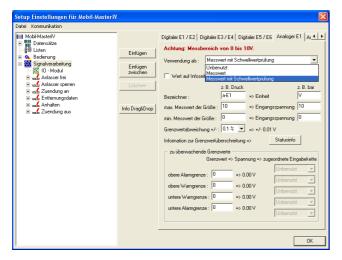

When using as measurement you have to set the designator, the physical quantity that should be measured or the measuring with the appropriate unit, e.g. litre or charging level in litre. Furthermore you have to set the voltage range of the connected device as minimum/maximum input voltage and the measurement range of the transmitter as minimum/maximum measurement according to the manufacturer's instructions.

Figure 142: Use as measurement

Caution:

In order to avoid the unintended creation of data you have to set the percentage limit deviation. The voltage parameter of the limit deviation is calculated automatically then.

In addition to the settings of the measurement the thresholds (limits) have to be defined. You distinguish between 5 zones. The lower alarm zone, the lower notify zone, the zone NORMAL, the upper warning zone and the upper alarm zone.

Figure 143: Use as measurement with threshold check

Example:

In order to explain the effect of a limit deviation you take the following scenario as a basis: A charging level should be supervised. The transmitter works with a voltage range of 0 to 10 Volt and a measurement range of 5 to 50 litre.

Figure 144 and 145The voltage parameter according to the charging level is indicated in red. The deviation of the limited level (1% = 0.45 l = 0.1 V) according to the measurement range is indicated in blue. Via the changing direction the effective direction of the change of both charging level and threshold changing is indicated.

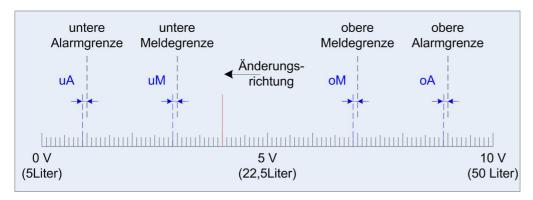


Figure 144: Use as measurement with threshold check

Note:

Figure 144, change of charging level in the direction of the lower notify limit: The voltage parameter of the transmitter has to go down 0,1 V (0,45 l) lower than the set level of the limited value (3 V) of the analogous input to create a lower notify data record.

Figure 145, change of charging level in the direction of the normal value: The voltage value of the transmitter has to rise 0,1 V (0,45 l) higher than the set level of the limited value (3 V) of the analogous input to create a Normal data record.

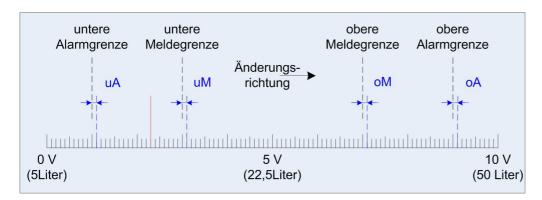
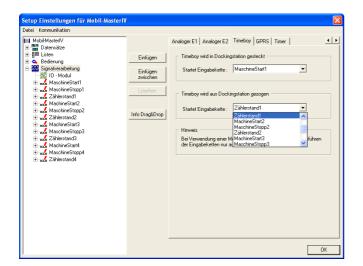



Figure 145: Use as measurement with threshold check

5.2.9.7 Connection Timeboy

Via the register card Timeboy input chains can be assigned to the actions Plug-in Timeboy and Pull-out Timeboy. They are activated, when the action occurs.

Figure 146: Assignment of input chains to plugging-in- and pulling-out-events

5.2.9.8 Alive data record

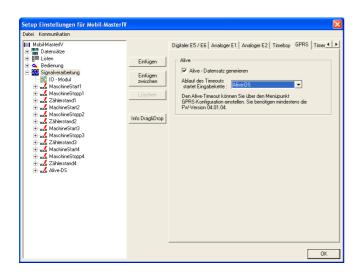
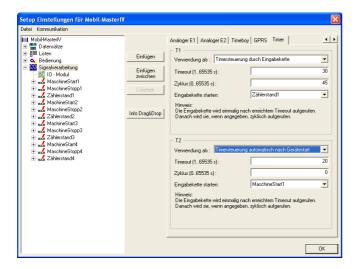
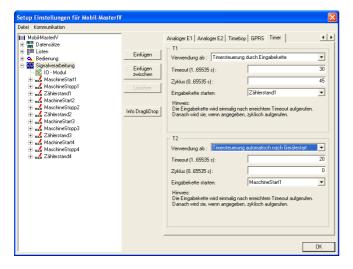


Figure 147: Setting the alive data record


With elder firmware versions the alive data record was created via the F6 input chain.

Now it is possible to create an input chain for the creation of alive data records via signal processing. In both variants the alive parameter in the GPRS.ini has to have a value larger than 60.

The Mobil-MasterIV checks Alive via F6 chain and then Alive via signal processing.


5.2.9.9 Setting of timers

Two types of timers are available. They are started either via an input chain (call up the function Start/stop timer) or automatically after starting the Mobil-MasterIV. An input chain can be assigned to each timer. It is called up after the timeout was reached and then, if set, cyclically.

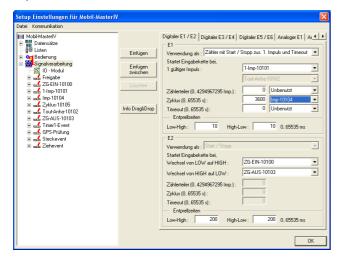
Figure 148: Setting of timers

5.2.9.10 Setting of timers

Two types of timers are available. They are started either via an input chain (call up the function Start/stop timer) or automatically after starting the Mobil-MasterIV. An input chain can be assigned to each timer. It is called up after the timeout was reached and then, if set, cyclically.

Figure 149: Setting of timers

5.2.10 Collection of vehicle data

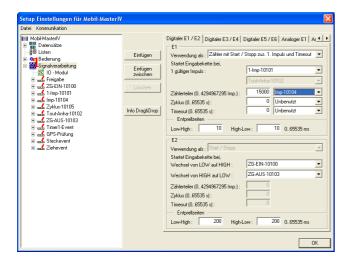

When collecting vehicle data it is normally necessary to write the movement data. For this a GPS-module is provided in the Mobil-MasterIV. This module delivers the exact position data as GPRMC data record (NMEA standard). In order to ascertain the position data, the active antenna of the GPS-module must be in line of sight with the satellites (see figure 16).

5.2.10.1 Creating GPS data

Collecting vehicle data requires a special configuration of the signal processing. The following variants can be used:

Cyclic creation of vehicle data

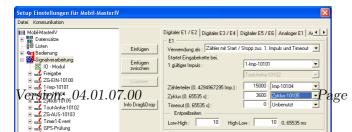
Generally there are two possibilities of creating cyclic data records. Either via a digital input as counter or via a timer-event. For both a cycle time is defined.


Figure 150: Cyclic creation of vehicle data

Collection of vehicle data depending on the distance

You want to create data records in a fixed distance raster to display the driven distance in a card system. Configure the digital input 1 via the counter splitter.

Set the number of impulses each driven km via a calibration tour. For this you read out the current counter reading of the Mobil-MasterIV via the system menu Status Mobil-Master of the TimeboyIII.


Then you move the distance of 1 km and read out the counter reader again. It is important, that the counter reader is set to 100.000 to add the impulses to 1 km.

The difference of both measurements indicates the number of km each driven kilometre. Multiply this value by the distance to drive till a data record is created. Then you get the value, that has to be set as counter splitter.

Figure 151: Collection of vehicle data depending on the distance

Cyclic collection of vehicle data depending on the distance

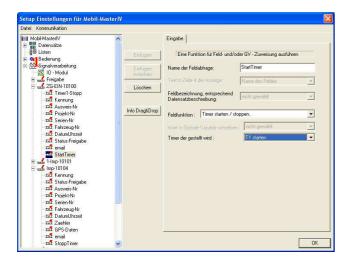

You want to create vehicle data depending on the distance, to display the driven distance in a card system. Furthermore you want to know, where a vehicle is momentary. For this you have to set both counter splitter (for defining the distance) and cycle value. This variant is a combination of both methods explained before: The cyclic data are cre-

Figure 152: Cyclic collection of vehicle data depending on the distance

Collection of vehicle data either cyclic or depending on the distance

If you want to create cyclic data, only if a given period elapsed without creating distance data (= cycle), you have to use a timer event.

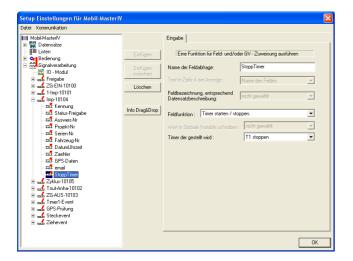

The cyclic creation of data is started by the input chain Ignition on. That means, if a driver starts the ignition without moving off, cyclic data are already created.

Figure 153: Activation via the event ignition on

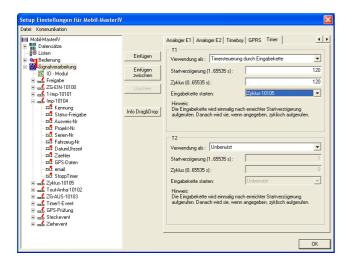
The input chain Ignition off deactivates the creation of cyclic data. Then no further cyclic data are created.

Figure 154: Deactivation via the event Ignition off

The counter splitter defines the distance to be covered to create a distance data record.


Version: 04.01.07.00 www.datafox.de

Manual Datafox Mobil-MasterIV


Figure 155: Definition of the counter splitter

Whensoever the input chain for distance data is run through, the timer for cyclic data collection is reset (the timer starts again). That way parallel creation of distance- and cyclic data is avoided.

Figure 156: Distance data stop the timer event

if no distance data record is created for the duration of the timer (the input chain for distance data is run through) and the timer is reset. if the assigned input chain is carried out after run-off of the timer and a cycle data record is created. Afterwards the whole process restarts.

Figure 157: Configuration of the timer event for cyclic creation of data

Use of the vehicle release

When stopping and restarting the ignition the Timeboy is released (although the Mobil-Master has already set relay 1 (starter release)).

Tickets should be used only if required. For technical reasons the Mobil-Master cannot ascertain while starting, whether a release already exists. Therefore a Ticket (being in the Timeboy) is called up every time and the release is set again.

5.2.11 Mathematical operations

The mathematical operator can carry out addition, subtraction, comparison (equal, not equal, greater/less than) and negation (No). The operand (the information) has to be available as string in decimal form [0..9]. The operands can be provided as constants, global variables or fields with the format (only numeric characters).

The operations addition and subtraction do not have to be explained further.

The following is valid for the negation (No): Each value of the operand > 0 has the result = 0; each value of the operand = 0 has the result = 1.

Manual Datafox Mobil-MasterIV

The following is valid for the comparison operations: A positive comparison (Yes) has the result = 1; a negative comparison (No) has the result = 0.

The result is stored in a global variable. The value this GV can be used for the decision for jump target.

formating operations

Record fields and GV (global variables) can be convert between hexadecimal strings and dezimal strings or between dezimal strings and hexadecimal strings. You can set a mask of zero sign to get a constant length of string. The maximum mask length is 16 characters. The max. resolution of operands is 8 Byte (64bit).

Example

Value in GV 0000290A should be convert to a dezimal value 9994 with a mask of 00000000. The result is 00009994.

5.3 Creating setups

5.3.1 Setup for vehicle data collection

This chapter explains, how you can create a setup for vehicle data collection and how you can transmit all necessary information to the device. Furthermore you will learn how to carry out a connection of TimeboyII or TimeboyIII on the Mobil-MasterIV. Please plan 3 up to 4 hours for working through this chapter. Take the time so that you can comprehend each step in a test environment.

5.3.1.1 General

For a setup of vehicle data collection you need at least one data record (transmission of GPS coordinates).

In the following example you hypothesize, that data are saved on the Mobil-MasterIV. Therefore you have to define data record descriptions (according to the data records) in the Timeboy. You also hypothesize, that the data are transmitted from the Mobil-MasterIV to the PC via a wired connection.

Caution:

If the ignition off, the GPS module is also switched off. Hence, no valid GPS co-ordinate can be provided for the start record.

Possible solutions:

1.) Over a global variable

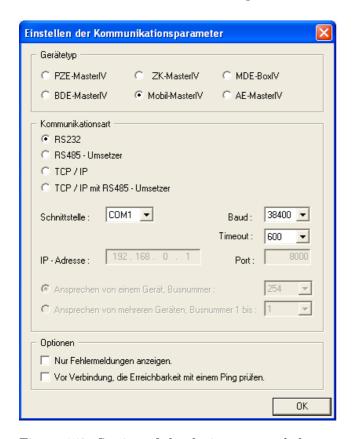
If the vehicle is put down, save the last valid co-ordinate in a global variable in the input chain. You can take over this value in the start record.

Attention:

Put the global variable in the start record immediately after the takeover on zero.

2.) In your application

Copy in your application the co-ordinate of the letzen valid record in the start record.


5.3.1.2 Necessary hardware

In order to carry out a vehicle data collection you need a Mobil-MasterIV with GPS and external GPS antenna, a Timeboy docking station and a TimeboyII or TimeboyIII. You use a zero-modem-cable to connect docking station and device.

5.3.1.3 Basic settings of the setup

At first you start the DatafoxStudioIV. Open the dialogue for creating communication parameters via < Kommunikation => Einstellungen>.

Set Mobil-MasterIV as device type.

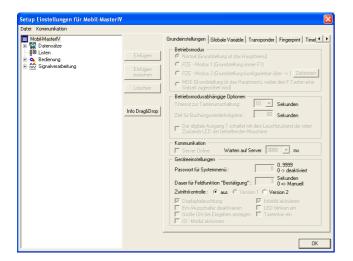
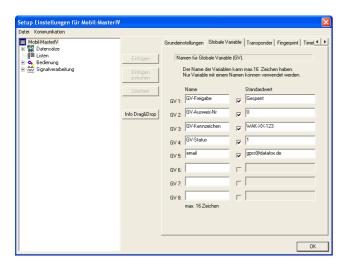

In this example you select the communication type RS232. Select the interface, as it is allocated on you server (COM1 by default). Baud rate and timeout value can remain on the default values in this case. But you should check the concurrence of the settings via the system menu-BIOS of the Mobil-MasterIV. If they are not concurrent you have to adapt the parameters via terminal (device configuration (Bios)) or DatafoxStudioIV. Confirm all changes via OK.

Figure 158: Setting of the device type and the communication parameters

Via < Datei => Speichern unter > you can save this setup (standard AESetup1) with an own name. In the following example you use the name Mobil-MasterIV-Setup.aes.


You can also create a new setup file via < Datei -> Neu> and save it with an own name. The setting of device type and communication parameters is important.

If the device type Mobil-MasterIV was set, only the option Access control is available for selection. In the following example you do not need an access control. Therefore you deactivate this option.

Figure 159: Basic settings

In order to demonstrate the use of global variables be define 5 preallocated variables. The variable GV-release (locked) contains the release status. The GV-Card-No. (0) is used to buffer the card numbers. The GV-licence-number (WAK-XX-123) is used to identify the driven vehicle. GV-status (1) contains the status. The last variable is Email (gprs@datafox.de). You need it to send the data to the given e-mail address.

Figure 160: Definition of global variables

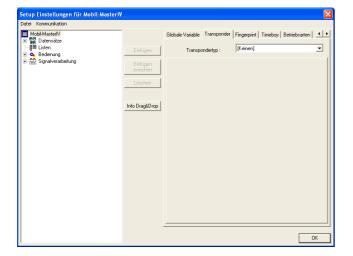
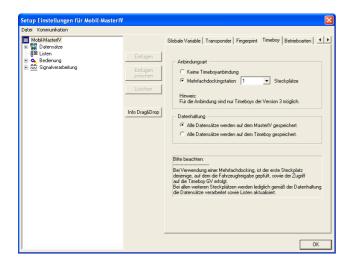



Figure 161: Setting of the transponder type

In our example no transponders are used.

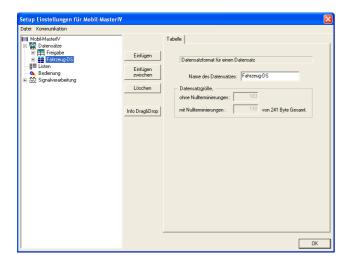
Manual Datafox Mobil-MasterIV

Our Mobil-MasterIV communicates with the Timeboy via a multiple docking station (plug-in position 1). The data are saved on the device.

Figure 162: Timeboy connection

5.3.1.4 Creating a data record description

In order to create a data record description you should exactly know, which data have to be created. In our example the following data records shall be created.


Release

- 1.) **Kennung** (indicates, which booking record was carried out)
- 2.) Freigabe (indicates the release status)
- 3.) Ausweis (indicates the card number (personnel number))
- 4.) **Projekt** (describes the current project)
- 5.) **DatumUhrzeit**(used as time stamp)
- 6.) email (indicates, which e-mail address the mail was sent to)

Vehicle-DS

- 1.) **Kennung** (indicates, which booking record is carried out)
- 2.) Freigabe (indicates the release status)
- 3.) Ausweis-Nr (identifies the person, who is booking)
- 4.) Fahrzeug-Nr (identifies the vehicle)
- 5.) **DatumUhrzeit**(used as time stamp)
- 6.) Zaehler (collects the counted impulses)
- 7.) **GPS-Daten** (indicates the position of the terminal)
- 8.) email (indicates, which e-mail address the mail was sent to)

The dialogue for editing the setup is opened via a double click on the client range of the DatafoxStudioIV or via < Setup => Editieren >. Mark the input Data records on the left side of the tree and click on Paste twice. Under Data records the entries Datensatz1 and Datensatz2 are created. Mark one entry and you can edit its characteristics on the right side. Please enter the names Release and Vehicle-DS there and mark the entries again in the tree. Now the names are updated.

Figure 163: Creating the data record description

Please mark the data record Release. Now click on the button Paste six times to create the 6 data fields. Then mark the data record Vehicle-DS and create 8 data fields. The rough definition is finished now. At next you have to set which data types (and their length) should be in each field. The following data types are available: string with numeric characters, string with ASCII-characters (text) and date time.

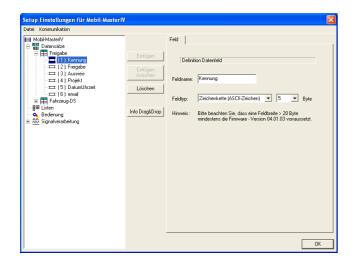
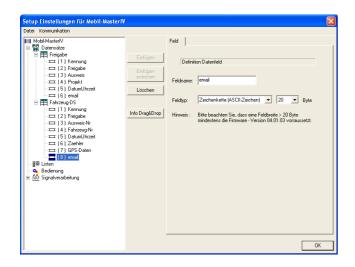



Figure 164: Creating the data record fields

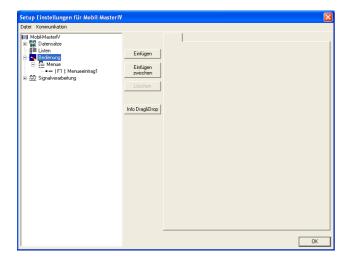
Mark an input in the tree and set the characteristics on the right side. Identification is defined as string with ASCII-characters (length 5). Release is set as string with ASCII-characters (length 15). Card and Project are defined as string with ASCII-characters (length 8). Date_Time is set as date_time. Email is defined as string with ASCII-characters (length 20).

Identification is defined as string with ASCII-characters (length 5). Release is defined as string with ASCII-characters (length 15). Card-No. is set as string with ASCII-characters (length 8). The data field Vehicle-No. is defined as string with ASCII-characters (length 10). Date_Time is set as date_time. The Counter is defined as string with numeric characters (length 10). The data field GPS-data is defined as string with ASCII-characters (length 28). At last, Email is set as string with ASCII-characters (length 20).

Figure 165: Creating the data record fields

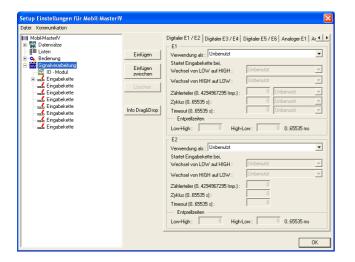
5.3.1.5 Creating the lists

In our example-setup no lists are necessary.


5.3.1.6 Definition of the device operation

After defining data records you have to set, how the booking records shall proceed. In other words, you have to set, how the device reacts when inputting something and what is expected from the user.

In this connection an input can be the plugging-in or the pulling-out of a Timeboy, or a signal on the digital input of the Mobil-MasterIV. Therefore you have to set in the beginning, which booking records shall be carried out. In the following example a data record shall be created, if:


- the Timeboy is plugged in the docking station (starter free)
- ▶ the Timeboy is pulled out of the docking station (starter locked)
- ightharpoonup the vehicle is started (10100)
- ightharpoonup the first impulse is registered (10101)
- ightharpoonup no signal is registered for 10 seconds (10102)
- ► after n:2 impulses (10104)
- ▶ vehicle operation each 15 seconds (10105)

There is no operation for the terminal (as explained in chapter 3.4). Therefore there is also no main menu. Nevertheless you need an input chain with the appropriate logic. For this mark the operation and click on Paste. Mark the menu, created that way, and create the menu item1 via Paste.

Figure 166: Main menu

Now you create the actual input chains. At first you mark the signal processing and create 8 input chains (by repeated clicking on Paste).

Figure 167: Creating the input chains

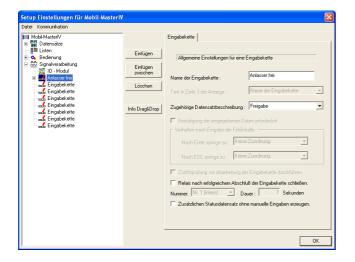
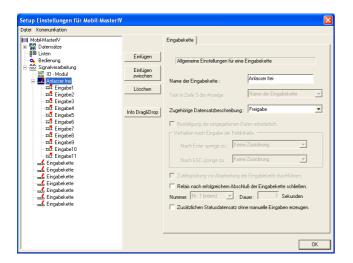
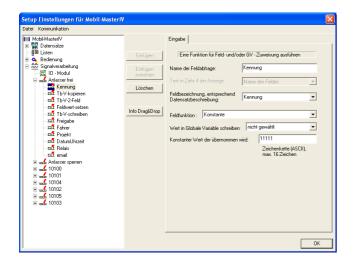



Figure 168: General settings of the input chains


If you mark an input chain, you can set the relevant settings on the right side. Please enter Starter free as name of the first input chain. Set Release as appropriate data record description. The fields of this data record description can be filled now. The other options are of no importance in this example and remain inactive.

Click on Paste eleven times to create 11 input chain fields.

Figure 169: Create the input chain fields

The first field is named Identification. Assign the same-named data record description. Select the field function Constant and set the constant value 11111 for identification.

Figure 170: Configuration of the input of Identification

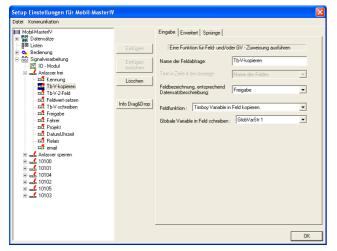
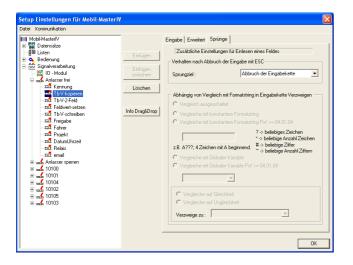


Figure 171: Configuration the of input Copy Tb-V


Mark the next field and name it Copy Tb-V. Select Release as field description (according to the data record description). You need the field function Copy Timeboy variable to field. Select the Glob-VarStr1 (= first variable of Timeboy setup) under Write global variable on field.

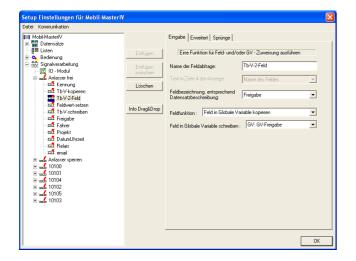
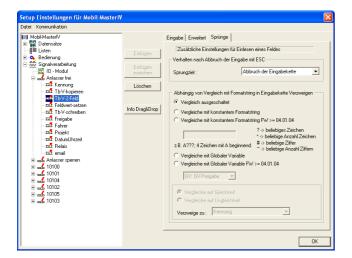
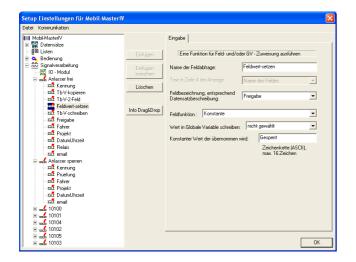

In our example no relevant settings have to be carried out on the register card Expanded. Therefore all options under expanded settings are deactivated. That means, the settings remain always unchanged. Therefore this point will not be explained again.

Figure 172: Expanded settings

You only want to transmit a value from a global variable to a data field, but you do not want to carry out any checks. Therefore you can apply the default settings on the register card Jumps.


Figure 173: Jump characteristics of Copy Tb-V

The third field is named Tb-V-2-Field. Please assign the data record description Release and select the field function Copy field to global variable. The field content is written on the variable GV-release (by appropriate assigning).


Figure 174: Configuration of the input Tb-V-2-Field

Also here the jump characteristics are not changed.

Figure 175: Jump characteristics of Tb-V-2-Field

The fourth field is named Set field value and assigned to the data record description Release. Select the function Constant and set Locked as constant value.

Figure 176: Configuration of the input Set field value

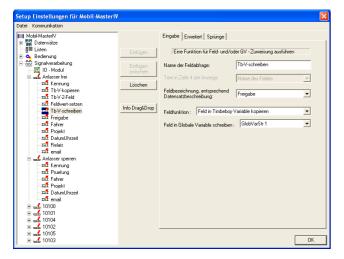
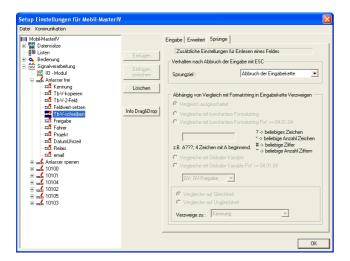
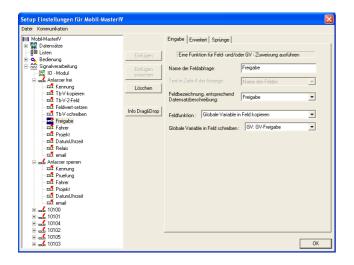



Figure 177: Configuration of the input Write Tb-V


Mark the next field and name it Write Tb-V. Again the data record description Release is assigned. Select the field function Copy field to Timeboy variable and set GlobVarStr1 as relevant constant.

Again the jump characteristics are not changed.

Figure 178: Jump characteristics of Write Tb-V

Mark the next field, name it Release and assign the appropriate data record description. Select the field function Copy global variable to field. By setting the GV-release its content is written on the field Release.

Figure 179: Configuration of the input Release

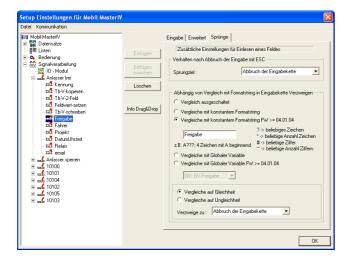
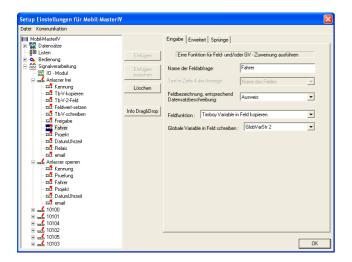
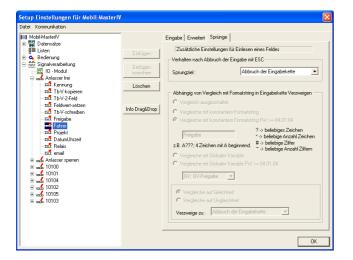



Figure 180: Jump characteristics of Release


Now a comparison is carried out on the register card Jumps. The jump target is the termination of the input chain. Activate Compare with constant format string FW >= 04.01.04 and set Release. At next you have to activate Compare for equality. That means, if the values of GV-release and Release are equal, the input chain is terminated at this point.

The next field is named Driver. Assign the data record description Card to this field and set the field function Copy Timeboy variable to field. Select GlobVarStr2 under Write global variable to field to write the driver data from the Timeboy (Timeboy Variable 2) on the field Card.

Figure 181: Configuration of the input Driver

Again no jumps are defined. Therefore the basic settings on the register card Jumps are applied.

Figure 182: Jump characteristics of Driver

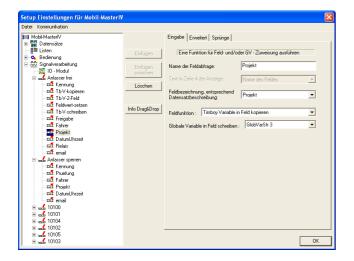
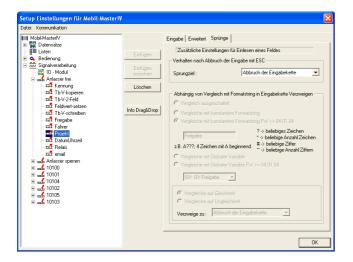
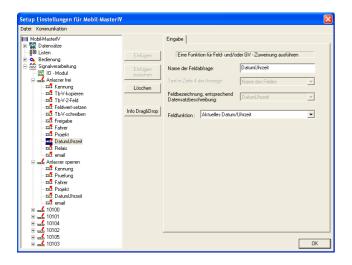



Figure 183: Configuration of the input Project


The eighth field is named Project and assigned to the appropriate data record description. Select the field function Copy Timeboy variable to field and set GlobVarStr3 as relevant variable.

You only transmit a value (from a GV) to a data field, but do not carry out any checks. Therefore you can apply the basic settings on the register card Jumps.

Figure 184: Jump characteristics of Project

Mark the next field and name it Date_Time. Assign the appropriate field function. If you have assigned the correct function, the selection of the appropriate data record description is set to date_time automatically. This field Date_Time (used as time stamp) is used in every input chain. The settings are always the same. Therefore this field will not be explained again.

Figure 185: Configuration of the input DateTime

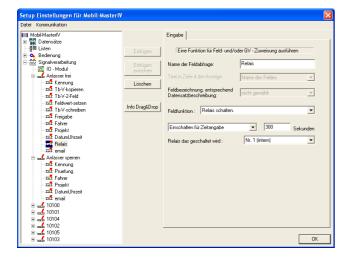
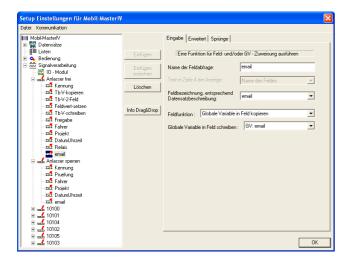
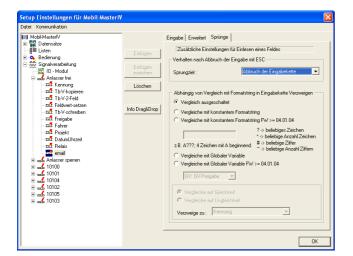
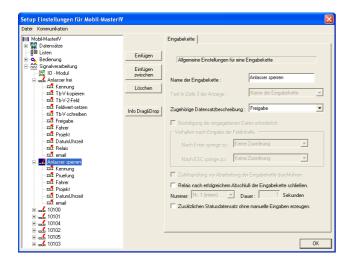



Figure 186: Configuration of the input Relay


The next field is named Relay. Set the field function Switch relay. Select Switch-on for the setting of time and set 300 seconds. The relay to be switched is relay no. 1.

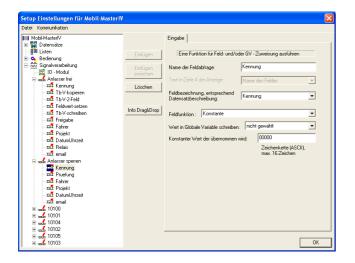
The last field of our input chain is named Email and assigned to the appropriate data record description. You want to write the content of the GV Email on the field. Therefore you select the function Copy global variable to field and set the GV: Email.

Figure 187: Configuration of the input Email



Here jumps are not necessary.

Figure 188: Jump characteristics of Email


The field Email (with the same content) is used at the end of every input chain. Therefore the settings of this field will not be explained again. Just apply the settings of the figures 187 and 188.

Now you can work on the second input chain, which is named Lock starter. Assign the data record description Release to it. There is no use of the other options. Now click on Paste six times to add 6 input chain fields.

Figure 189: Settings of the input chain Lock starter

The first field is used to identify the data record. Therefore you name it Identification and assign the appropriate data record description. Select the field function Constant and set 00000 as constant value for identification.

Figure 190: Configuration of the input Identification

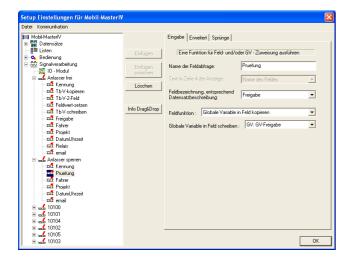
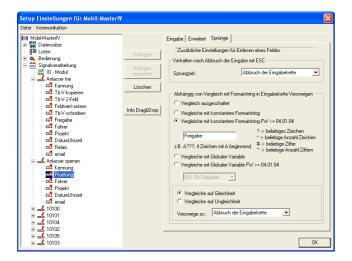



Figure 191: Configuration of the input Check

Mark the next field and name it Check. Assign the data record field Release. Select the field function Copy global variable to field and set GV-Release as that variable, whose content shall be written on the field.

Now a comparison is carried out on the register card Jumps. You compare the content of the GV-Release and the constant format string Release for equality. In case of concurrence you set Termination of the input chain under Branch to.

Figure 192: Jump characteristics of Check

The next field is named Driver. Assign the data record description Card to this field and set the field function Copy Timeboy variable to field. Select GlobVarStr2 under Write global variable on field (second GV of Timeboy)

Figure 193: Configuration of the input Driver

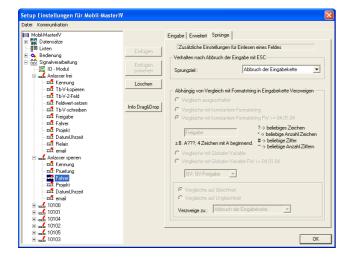
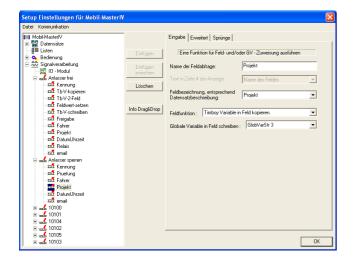
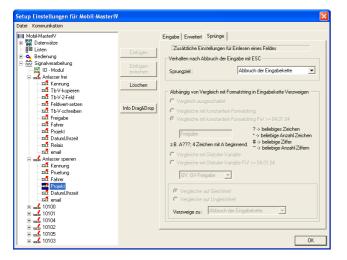
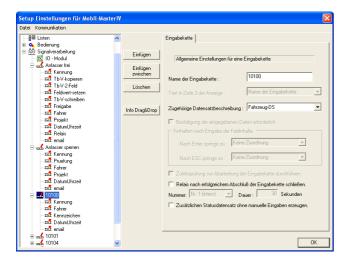



Figure 194: Jump characteristics of Driver


You just want to write a value (from a GV) on a data field but do not want to carry out any checks. Therefore the basic settings can be applied.

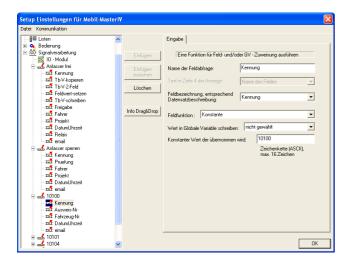
The next field is named Project and assigned to the appropriate data record field. Select the field function Copy Timeboy variable to field and set GlobVarStr3 as variable, whose content shall be written on the field Project.


Figure 195: Configuration of the input Project

Here you can apply all settings.

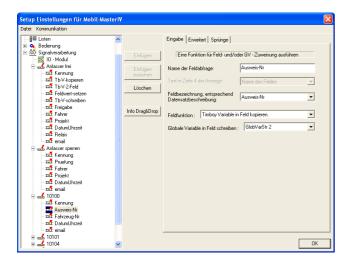
Figure 196: Jump characteristics of Project

Now you have to define the fields Date_Time and Email. You may find the relevant settings in figure 185, 187 and 188.



data record field Vehicle-DS. The other options are not used. Click on Paste fife times to add 5 input chain fields.

The third input chain is named 10100. Assign the


Figure 197: Settings of the input chain 10100

The first field is named Identification. Select the appropriate data record description and set the field function Constant (with 10100 as constant value).

Figure 198: Configuration of the input Identification

Mark the next field and name it Card-No. Set Card-No. as appropriate data record description. This card number (GlobVarStr2 = Variable 2 of Timeboy) is written from the Timeboy on the field Card-No. via setting the function Copy Timeboy variable to field.

Figure 199: Configuration of the input Card-No.

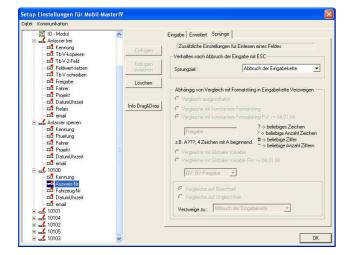
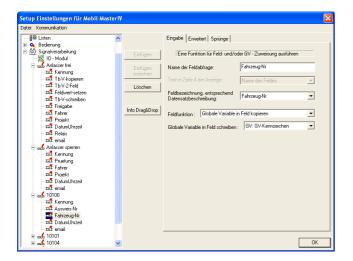
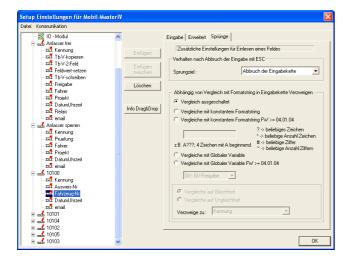



Figure 200: Jump characteristics of Card-No.


The jump characteristics are not changed.

The next field is named Vehicle-No. The appropriate data record description is the same-named field Vehicle-No. Select the function Copy global variable to field to write the content of the variable (GV-licence-number, set under Write global variable on field) on the field Vehicle-No.

Figure 201: Configuration of the input Vehicle-No.

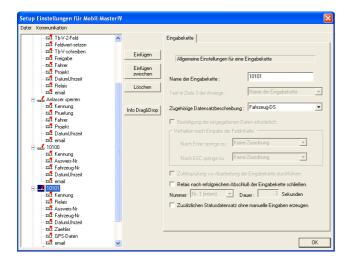
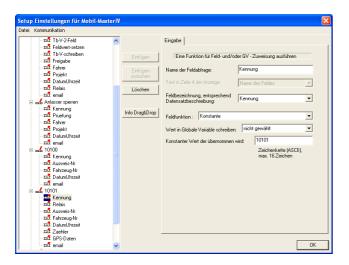

Here you can apply all pre-settings.

Figure 202: Jump characteristics of Vehicle-No.

The fields Card-No. and Vehicle-No. are used in the following input chains. The content is always the same. Therefore these fields are not explained again.


Now you have to define the fields Date_Time and Email. You may find the relevant settings in figure 185, 187 and 188.

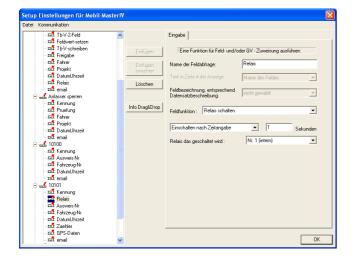
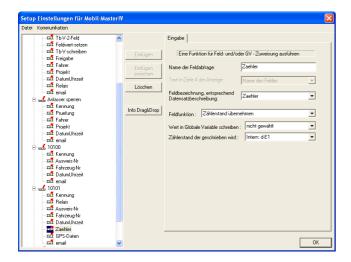

Mark the next input chain and name it 10101. Set Vehicle-DS as appropriate data record description. Add 8 input chain fields via clicking on Paste eight times.

Figure 203: Settings of the input chain 10101

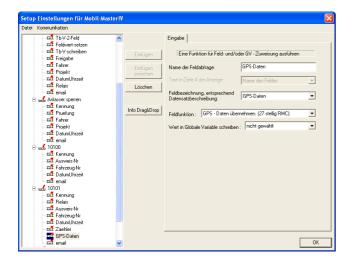
The first field is named Identification. Select the appropriate, same-named field description and set the field function Constant (with 10101 as constant value identifying the input chain).

Figure 204: Configuration of the input Identification



The next field is named Relay. Set the field function Switch relay. Select Switch-on after setting of time and set 1 seconds. The relay to be switched is the internal relay no. 1.

Figure 205: Configuration of input Relay


Now you have to define the fields Ausweis-Nr, Fahrzeug-Nr. You may find the relevant settings in figure 199 to 202 and 185.

The field after Date_Time is named Counter and assigned to the same-named data record field. Set the function Apply counter reading and select the internal digital input 1 (d-E1) under Counter reading to be written.

Figure 206: Configuration of the input Counter

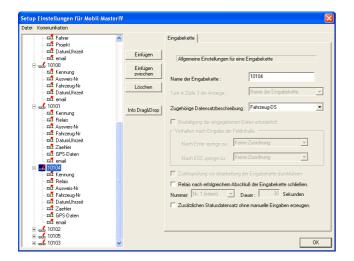
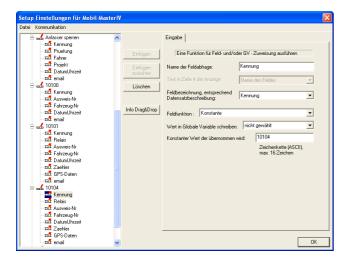

The next field is named GPS data. Select the samenamed data record field. Via the field function Apply GPS-data the position is written on the selected data record field.

Figure 207: Configuration of the input GPS data

Also the fields Counter and GPS data are used several times and therefore not explained again.


Define the field Email according to figure 187 and 188.

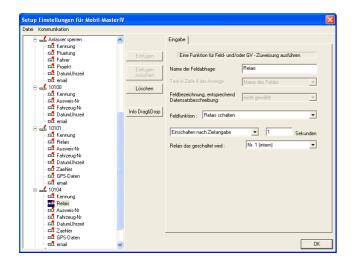

The next input chain is named 10104. Assign the data record description Vehicle-DS and create 8 fields for this input chain.

Figure 208: Settings of the input chain 10104

The first field is named Identification. Select the appropriate, same-named field description and set the field function Constant (with 10104 as constant value according to the name of the input chain).

Figure 209: Configuration of the input Identification

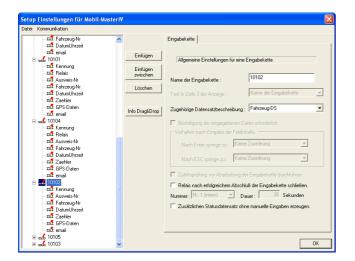
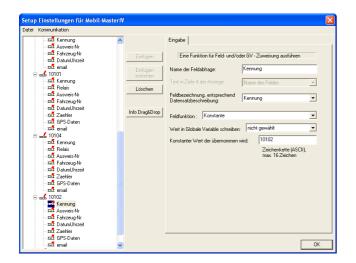

The next field is named Relay. Set the field function Switch relay. Select Switch-on after setting of time and set 1 second. The relay to be switched is relay no. 1.

Figure 210: Configuration of the input Relay

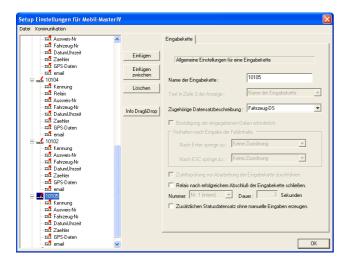
At next you have to configure the fields: "'Ausweis-Nr"' (Abb. 199 & 200), "'Fahrzeug-Nr"' (Abb. 201 & 202), "'DatumUhrzeit"' (Abb. 185), "'Zaehler"' (Abb. 206), "'GPS-Daten"' (Abb. 207) and "'email"'



(Abb. 187 & 188).

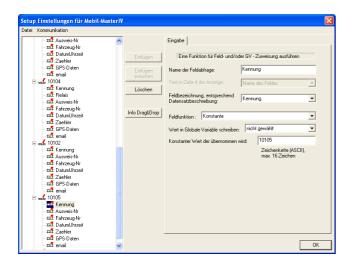
Mark the next input chain and name it 10102 (on the right side). Again the data record description Vehicle-DS is assigned. You do not have to set further settings. Create 7 fields for this input chain.

Figure 211: Settings of the input chain 10102

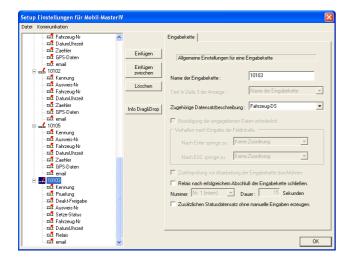


The first field is named Identification. As regards content, it is equivalent to the same-named fields, explained in the former input chains (except the constant value 10102).

Figure 212: Configuration of the input Identification

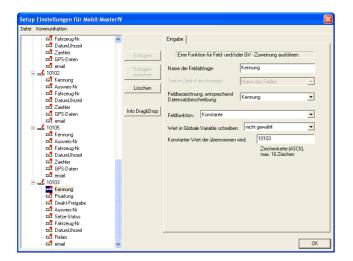

Again you have to configure the fields: "'Ausweis-Nr"' (Abb. 199 & 200), "'Fahrzeug-Nr"' (Abb. 201 & 202), "'DatumUhrzeit"' (Abb. 185), "'Zaehler"' (Abb. 206), "'GPS-Daten"' (Abb. 207) and "'email"' (Abb. 187 & 188).

Mark the next input chain and name it 10105. Again the data record description Vehicle-DS is assigned.

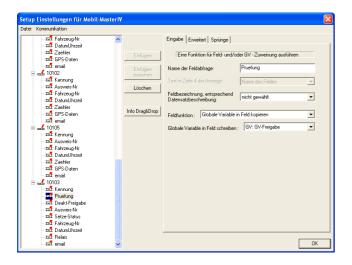

Figure 213: Settings of the input chain 10105

As regards content the field Identification corresponds to the same-named fields, explained in the former input chains (exception: the constant value 10105).

Figure 214: Configuration of the input 10105


Again you have to configure the fields: "'Ausweis-Nr"' (Abb. 199 & 200), "'Fahrzeug-Nr"' (Abb. 201 & 202), "'DatumUhrzeit"' (Abb. 185), "'Zaehler"' (Abb. 206), "'GPS-Daten"' (Abb. 207) and "'email"' (Abb. 187 & 188).

The last input chain is named 10103. Again the data record description Vehicle-DS is assigned.


Figure 215: Settings of the input chain 10103

As regards content, the field Identification is equivalent to the same-named fields, explained in the former input chains (except the constant value 10103).

Figure 216: Configuration of the input Identification

The second field of our last input chain is named Check. You do not assign a field description, that means, no data record field is filled. Select the function Copy global variable to field and set the GV-Release under Write global variable on field.

Figure 217: Configuration of the input Check

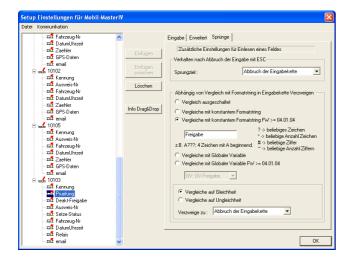
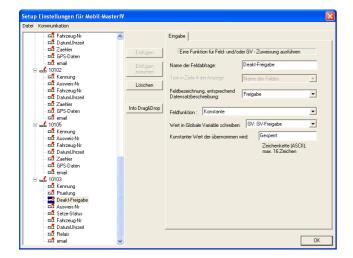
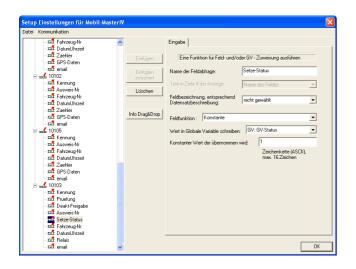



Figure 218: Jump characteristics of Check

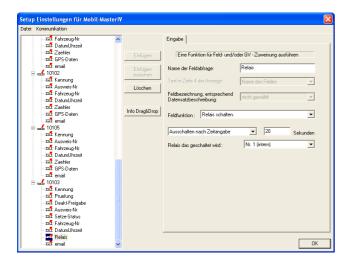
Now you compare the content of the GV-Release and the constant format string Release for equality. If they are concurrent, the action (set under Branch to) is carried out, in this case the Termination of the input chain.



Mark the next field and name it Deact-Release. Assign the data record field Release. Select the function Constant and set Locked as constant value (written on the GV-Release via Write value on global variable).

Figure 219: Configuration of the input Deact-Release

Configure the fourth field (Ausweis-Nr) according to the figures 199 und 200.



The fifth field is named Set status. Select the field function Constant and set 1 as constant value. Select GV-Status under Write value on global variable. In this field only the value of the GV is changed. Therefore no field description is assigned.

Figure 220: Configuration of the input Set status

Please configure the fields "'Fahrzeug-Nr"' (see figures 199 & 200) and "'DatumUhrzeit"' (see figures 185).

The penultimate field is named Relay. Set the field function Switch relay. Select Switch-off after setting of time and set 20 seconds. The relay to be switched is relay no. 1.

Figure 221: Configuration of the input Relay

At last you have to configure the input chain field email (see figures 187 and 188).

Now all input chain are created. In order to use the digital inputs you have to configure their use under Signal processing.

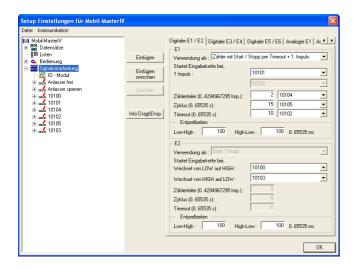
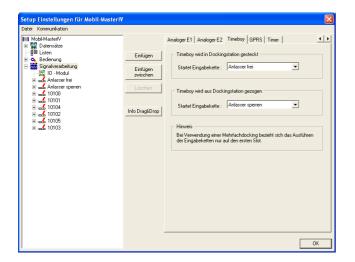



Figure 222: Settings of the signal processing

Mark the field Signal processing. Now you can configure the inputs on the right side. Assign the use as Counter with Start/Stop via timeout and 1. impulse to the first input E1. Assign an input chain to the events. Set the input chain 10101 for the first impulse, i.e. the input chain is started with the first impulse. Set 2 as counter splitter and assign the input chain 10104, i.e. each second impulse (being registered after the first one) starts the input chain. The time value of the cycle is set to 15. You assign the input chain 10105 to it, i.e. this input chain is carried out each 15 seconds during operation. Set 10 for the timeout and assign the input chain 10102, i.e. the input chain is carried out, if no signal is registered for 10 seconds. You have to carry out the following settings for the second input E2: Set the input chain 10100 for Low to High (switching-on) and the input chain 10103 for High to Low (switching-off). Set a debounce time of 100 each.

Via the arrow keys (◀ ▶) you navigate to the register card Timeboy. Here you can assign the input chains for plugging the Timeboy in the docking station (starter free) or rather pulling the Timeboy out of this docking station (lock starter).

Figure 223: Timeboy settings of the signal processing

5.3.1.7 Setup transmission

When you have worked through all these steps, the setup is ready. In order to check the booking records, the setup has to be transmitted to the Mobil-MasterIV.

Connect the Mobil-MasterIV to the PC according to the selected communication type. Make sure, that the PC interface is configured appropriately; e.g. baud rate, number of data bits, parity and stop bits of the COM-interface have to correspond to the configuration of the terminal.

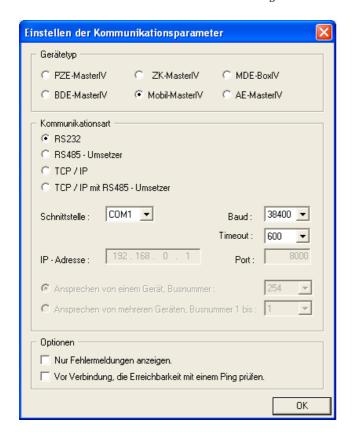
Now you can transmit the setup to the device via $< Kommunikation => Setup\ schreiben >$. The progress bar indicates, that data are transmitted to the device. A successful conclusion of the transmission is indicated by a message, you have to confirm via OK.

Figure 224: Transmitting the setup to the device

In order to check the processes, you have to set a different transmission method (e.g. GSM/GPRS) for the Mobil-MasterIV, because the Timeboy docking station is connected to the RS232 interface via null-modem-cable. For this you have to open the Bios-settings via < Kommunikation => Ger"atekonfiguration(Bios)>. You may find further information in chapter 4.5.12.

5.3.2 Setup for vehicle data collection (mobile operation with switching-off)

In this chapter there is explained, how you can create a setup for vehicle data collection (in the following example the operational mode Mobile operation with power off, intended to be used in vehicles). Furthermore you will learn how to connect the Timeboy to the Mobilmaster and how to expand the Mobilmaster data records with Timeboy data. The setup of the Timeboy is also explained. Please plan 4 up to 5 hours for working through this chapter. Take the time, so that you can comprehend each step in a test environment.


5.3.2.1 Necessary hardware

In order to carry out a vehicle data collection you need a Mobil-MasterIV with GPS, a Timeboy docking station and a Timeboy. You use a null-modem-cable to connect docking station and Mobil-MasterIV.

5.3.2.2 Basic settings of the setup

5.3.2.2.1 Basic settings of the Mobil-MasterIV

At first you start the DatafoxStudioIV. Open the dialogue for creating the communication parameters via < Kommunikation => Einstellungen>.

Set Mobil-MasterIV as device type.

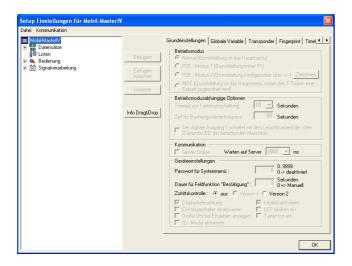

In this example you select the communication type RS232. Select the interface, as it is allocated on you server (standard COM1). Baud rate and time-out value can remain on the default values in this case. But you should check the concurrence of the settings via the system menu-BIOS of the Mobil-MasterIV. If they are not concurrent, you have to adapt the parameters via terminal (device configuration (Bios)) or DatafoxStudioIV. Confirm all changes via OK.

Figure 225: Setting of device type and communication parameters

 $Via < Datei => Speichern\ unter>$ you can save this setup (standard AESetup1) with an own name. In the following example you use the name Mobil-MIV, mobiler Betrieb mit Abschaltung - 080208 - one-way-ticket.aes.

You can also create a new setup file via < Datei -> Neu> and save it with an own name. The setting of device type and communication parameters is important. Only then all necessary settings and functions are available.

If the device type Mobil-MasterIV was set, there is only the option Access control is available for selection. In the following example you do not need an access control. Therefore you deactivate this option.

Figure 226: Basic settings

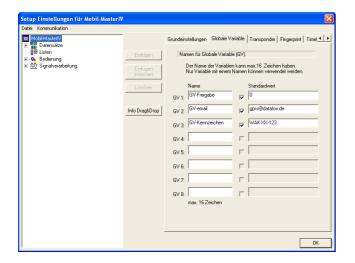
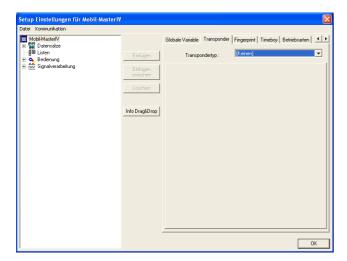


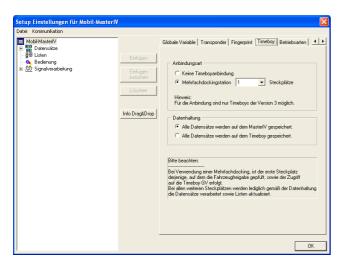
Figure 227: Definition of global variables


In order to demonstrate the use of global variables you define 3 preallocated variables.

The variable GV-Release (0) is used to save the release status (0/1).

You need the variable GV-email (gprs@datafox.de), to send the data records to the given e-mail address.

The GV-licence-number (WAK-XX-123) is used to identify the driven vehicle.

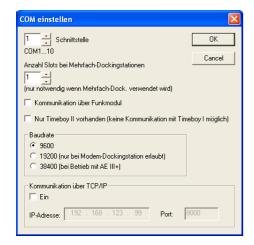


In this example-setup no transponder are used for the device.

Also the fingerprint settings on the following register cards are not relevant in our example.

Figure 228: Setting of the transponder type

Our Mobil-MasterIV communicates with the Timeboy via multiple docking station (plug-in position 1). The data are saved on the device.


Figure 229: Timeboy connection

Setting the operating modes takes place after creating the input chains, because there the input chains have to be assigned.

5.3.2.2.2 Basic settings of the Timeboy

At first you have to start the TbSetup. Open the dialogue for setting the communication parameters via < Schnittstelle => COMEinstellen >.

Set the appropriate COM interface (standard COM 1). The number of docking slots is set to 1. Select 9600 as baud rate.

Figure 230: Communication settings of the Timeboy

 $\label{eq:Via} \begin{tabular}{ll} Via < Date i => Speichern\ unter > \mbox{you\ can\ save\ this\ setup\ (standard\ AESetup1)\ with\ an\ own\ name.} \\ In\ the\ following\ example\ you\ use\ the\ name\ _Timeboy-III,\ mobiler\ Betrieb\ mit\ Abschaltung\ -\ 080204.tbs \end{tabular}$

You can also create a new setup file via < Datei -> Neu> and save it with an own name. The setting of device type and communication parameters is important.

 $Via < Setup => Setup \ Editieren >$ the dialogue for editing the setup is opened.

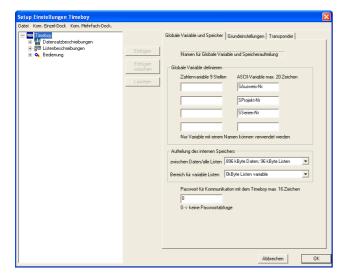
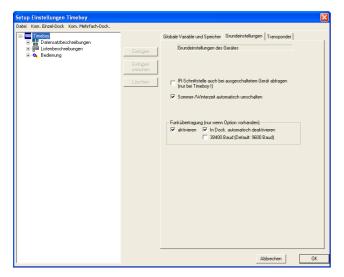
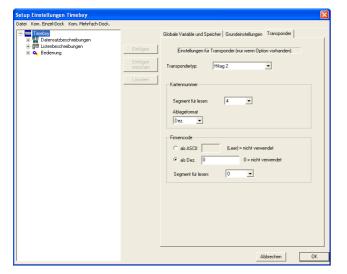


Figure 231: Global variables of the Timeboy


In our Timeboy you need 3 ASCII-variables.

"'SAusweis-Nr"' (equivalent to GlobVarStr1 in the Mobil-MasterIV-setup)

"'S Projekt-Nr"' (equivalent to Glob Var
Str2 in the Mobil-Master
IV-setup) $\,$


"'SSerien-Nr"' (equivalent to GlobVarStr3 in the Mobil-MasterIV-setup)

Activate Adjust summer-/wintertime automatically under the basic settings. You can activate radio transmission, but his option is not necessary. Because you want to send data with the Mobil-MasterIV, you should select the option Deactivate in Dock. automatically in addition.

Figure 232: Basic settings of the Timeboy

In our example you do not use any transponder. Therefore the field Transponder is not relevant now.

Figure 233: Transponder settings of the Timeboy

5.3.2.3 Creating a data record description

In order to create a data record description you should exactly know, which data have to be created. In our example the following 4 data records shall be created. You want to generate the first two data records in the Timeboy to send them to the Mobil-MasterIV (by the Timeboy) afterwards. For this is is important, that both data record descriptions in the two setups are identical (order, type, size of fields).

Tb-Projektdaten Mobil-MasterIV & Timeboy

1.) **DatumUhrzeit** (used as time stamp)

2.) Ausweis-Nr (indicates the card number (personnel number))

3.) Projekt-ID (describes the current project)
4.) Serien-Nr (indicates the serial number)

5.) email (indicates, which e-mail address the mail was sent to)

Materialbuchung Mobil-MasterIV & Timeboy

1.) Ausweis-Nr (indicates the card number (personnel number))
2.) Lagerplatz (indicates the yard, material was taken from)

3.) Material (indicates the used material)

4.) Menge (indicates, how much material was used)

5.) email (indicates, which e-mail address the mail was sent to)

Freigabe-DS

1.) Kennung (indicates, which booking record was carried out)
 2.) Ausweis-Nr (indicates the card number (personnel number))

3.) Projekt-Nr (describes the current project)
4.) Serien-Nr (indicates the serial number)

5.) **DatumUhrzeit** (used as time stamp)

6.) email (indicates, which e-mail address the mail was sent to)

Fahrzeug-DS

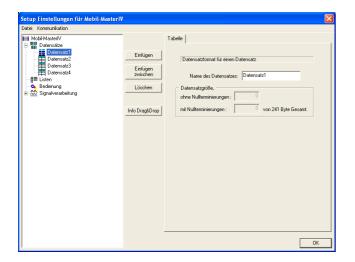
1.) **Kennung** (indicates, which booking record was carried out)

2.) Status-Freigabe (indicates the release status)

3.) Ausweis-Nr (identifies the person, who is booking (personnel number))

4.) Projekt-Nr (describes the current project)
5.) Serien-Nr (indicates the serial number)
6.) Fahrzeug-Nr (identifies the vehicle)

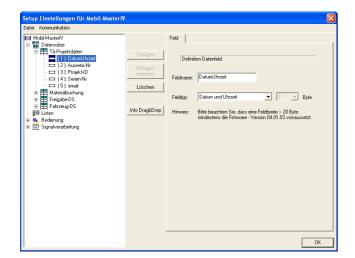
7.) **DatumUhrzeit** (used as time stamp)


8.) Zaehler (collects the registered impulses)

9.) **GPS-Daten** (indicates the position of the terminal)

10.) email (indicates, which e-mail address the mail was sent to)

5.3.2.3.1 Data record description Mobil-MasterIV



The dialogue for editing the setup is opened via a double click on the client range of the DatafoxStudioIV or via < Setup => Editieren >. Mark the input Data Records on the left side of the tree and click on Paste four times. Under Data records the entries Datensatz1 up to Datensatz4 are created. Mark one entry and you can edit its characteristics on the right side. Please enter the names Tb-Project data, Material booking, Release-DS and Vehicle-DS there and mark the entries in the tree again. Now the names are updated.

Figure 234: Creating the data record description

Please mark the data record Tb-Project data. Now click on the button Paste fife times to create the 5 data fields. At next please create 5 data fields for Material booking and 6 data fields for Release-DS. Then mark the data record Vehicle-DS and create 10 data fields.

The rough definition is finished now. At next you have to set which data types (and their length) should be in each field. The following data types are available: string with numeric characters, string with ASCII-characters (text) and date time.

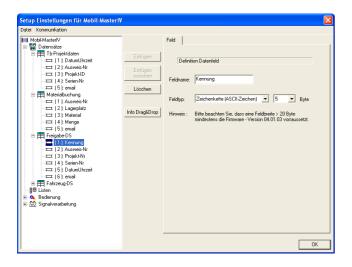
Mark an input in the tree and set the characteristics on the right side. Date_Time is set as date_time.

Card-No. and Project-ID are defined as string with numeric characters (length 4).

Serial-No. is set as string with numeric characters (length 10).

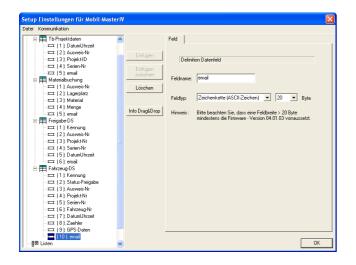
Email is defined as string with numeric characters (length 20).

Figure 235: Creating the data record fields Tb-Project data



The data record description Material booking is structured as follows.

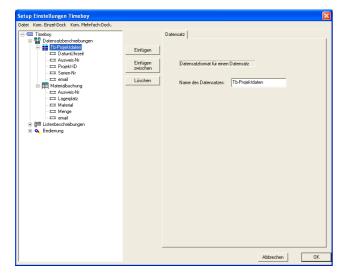
The data fields Card-No., Yard, Material and Amount are defined as string with numeric characters (length 4). The field Email is set as string with ASCII-characters (length 20)


Figure 236: Creating the data record fields Material booking

Identification is set as string with ASCII-characters (length 5). The data fields Card-No. and Project-No. are defined as string with numeric characters (length 4).

Serial-No. is defined as string with numeric characters (length 10). Date_Time is set as date_time. As usual Email is defined as string with ASCII-characters (length 20).

Figure 237: Creating the data record fields Release-DS



Identification is defined as string with ASCII-characters (length 15). Status Release is defined as string with ASCII-characters (length 1). The data fields Card-No., Project-No., Serial-No. and Vehicle-No. are set as string with ASCII-characters (length 10). Date_Time is set as date_time. The Counter is defined as string with numeric characters (length 10). The data field GPS data is defined as string with ASCII-characters (length 40). At last, Email is set as string with ASCII-characters (length 20).

Figure 238: Creating the data record fields Vehicle-DS

5.3.2.3.2 Data record description of the Timeboy

You create a setup with the data record descriptions Tb-Project data and Material booking via the program TbSetup (used to create setups for the Timeboy). This data record descriptions have to correspond to those of the Mobil-MasterIV(see figure 235 & 236.

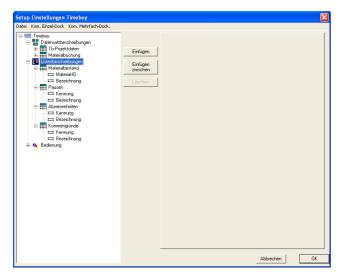
Figure 239: Data record description of the Timeboy

Caution:

Transmission of data records can only take place, if the data record descriptions correspond exactly.

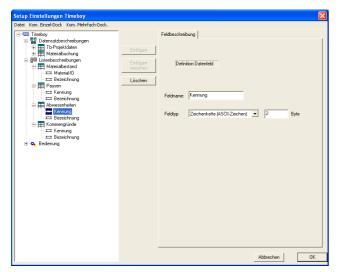
5.3.2.4 Creating the lists

After setting, which data shall be created, you have to decide, which information are necessary for that purpose.


5.3.2.4.1 Creating the Mobil-MasterIV lists

In our example-setup no lists are necessary.

5.3.2.4.2 Creating the Timeboy lists


In our example-setup you use the following lists: Material inventory, Breaks, Absences and Entry-reasons.

These 4 lists are defined in the TbSetup as follows. Mark the field List descriptions in the tree of the Edit-dialogue. Create 4 new lists (with 2 fields each) via Paste. The first list is named Material inventory, containing the 2 fields Material-ID (string with ASCII-characters (length 4)) and Designation (string with ASCII-characters (length 20)). The second list is named Breaks, containing the 2 fields Identification (string with ASCII-characters (length 2)) and Designation (string with ASCII-characters (length 20)).

Figure 240: Creation of the list descriptions

The third list is named Absences, containing the 2 fields Identification (string with ASCII-characters (length 2)) and Designation (string with ASCII-characters (length 20)). The fourth list is named Entry-reasons, containing the 2 fields Identification (string with ASCII-characters (length 2)) and Ddesignation (string with ASCII-characters (length 20)).

Figure 241: Continuation of the list descriptions

The 4 lists have to be created via an editor (e.g. Microsoft Editor) and saved with the appropriate name as a *.txt file. Another possibility is the creating of lists via an own software. The fields of the lists are separated via a tabulator. Comment lines start with a semicolon.

Liste Materialbestand

```
;Material-ID Bezeichnung
0010 Schraube M8 x10
0011 Schraube M8 x20
0012 Schraube M8 x35
0013 Schraube M8 x50
0014 Schraube M8 x80
0015 Schraube M10x20
: :
```


Liste Pausen

;Kennung	g Bezeichnung
01	Frühstück
02	Mittag
03	Kaffee
04	Abendbrot

Liste Abwesenheiten

;Kennung	g Bezeichnung
01	A-Post
02	AA-Kiosk
03	A-Bank
04	A-Arzt
05	AA-Dienstgang

Liste Kommengründe

;Kennung	g Bezeichnung
01	SK-Post
02	SK-Kiosk
03	SK-Bank
04	SK-Arzt
05	SK-Dienstgang

5.3.2.5 Definition of the device operation

After defining data records you have to set, how the booking records shall proceed. In other words, you have to set, how the device reacts when inputting something and what is expected from the user.

5.3.2.5.1 Device operation of the Mobil-MasterIV

In this connection an input can be a signal on the digital input of the Mobil-MasterIV, a GPS signal or a timer event. Therefore you have to set in the beginning, which booking records shall be carried out. In the following example a data record shall be created, if:

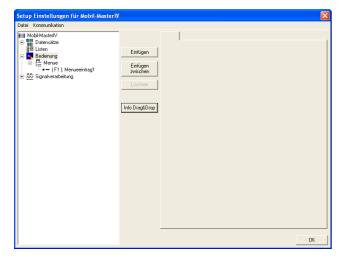
▶ there is a first valid vehicle release on hand

▶ the ignition is started

▶ the first running impulse is registered

▶ the vehicle is not moved for 60 seconds

▶ the ignition is stopped


▶ two running impulses (each) were registered (counter split-

▶ the vehicle is moved each 40 seconds (cycle)

▶ there are the first valid GPS data on hand

▶ the ignition is not restarted within 40 seconds after stopping it

Freigabe
ZG-Ein-10100
1-Imp-10101
Tout-Anha-10102
ZG-Aus-10103
Imp-10104
Zyklus-10105
GPS-Prüfung

There is no direct operation for the terminal (as explained in chapter 3.4). Therefore there is also no main menu. Nevertheless you need an input chain with the appropriate logic. For this mark the operation and click on Paste. Mark the menu, created that way, and create the menu item 1 via Paste.

Timer1-Event

Figure 242: Main menu

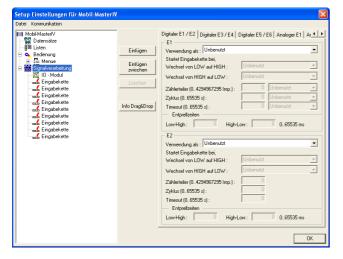
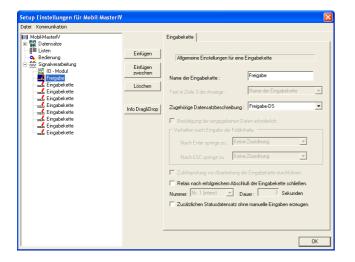
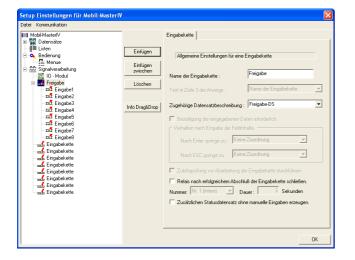



Figure 243: Creating the input chains


Now you create the actual input chains. At first you mark the signal processing and create 9 input chains (by repeated clicking on Paste).

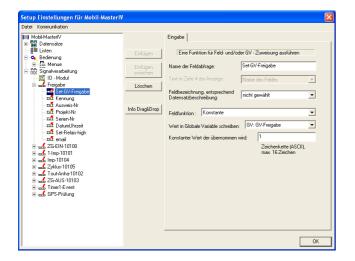
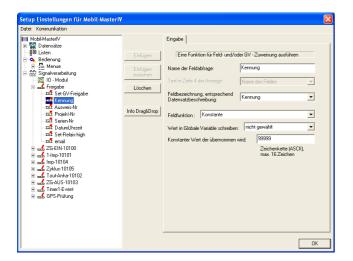
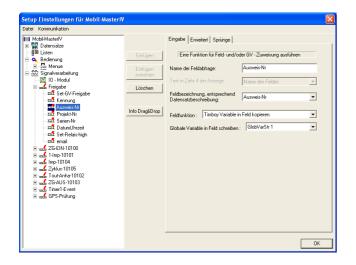

If you mark an input chain, you can set the relevant settings on the right side. Please enter Release as name of the first input chain. Set Release-DS as appropriate data record description. The fields of this data record description can be filled. The other options are of no importance in this example and remain inactive.

Figure 244: General settings of the input chains

Click on Paste eight times to create 8 input chain fields.


Figure 245: Creating the input chain fields

The first field is named Set-GV-Release. Set the value of the GV-Release to 1 (1=free, 0=locked). Define the field function Constant and select the GV-Release and the value to be written.


Figure 246: Configuration of the input Set-GV-Release

The second field is named Identification. Assign the same-named data record description. Select the field function Constant and set the constant value 99999 for identification.

Figure 247: Configuration of the input Identification

Mark the next field and name it Card-No. Select the same-named data record description. You need the field function Copy Timeboy variable to field. Select the GlobVarStr1 (= first ASCII-variable of Timeboy (SCard-No)) as variable to be copied.

Figure 248: Configuration of the input Card-No.

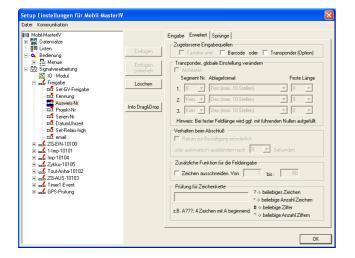
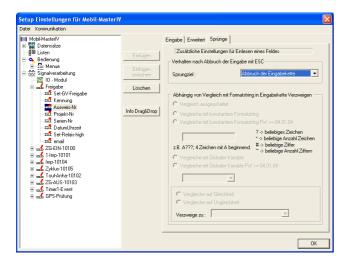
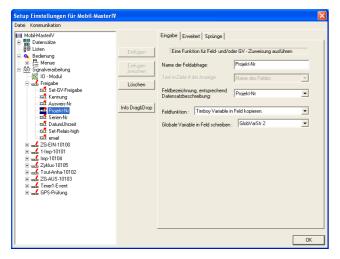



Figure 249: Expanded settings of Card-No.


The register card Expanded is of no use in this example-setup, because you can apply all settings. This is also valid for all the other expanded settings of this setup. That means, the settings are not changed in all following examples. Therefore this point is not explained again.

You only want to transmit a value from a global variable to a data field, but you do not want to carry out any checks. Therefore you can apply the basic settings on the register card Jumps. In the whole setup jumps are of no use. Therefore this point will not be explained again.

Figure 250: Jump characteristics of Card-No.

The fourth field is named Project-no.. Assign the same-named data record description. Select the field function Copy Timeboy variable to field and set GlobVarStr2 (= 2nd ASCII-variable (SProject-No.)) as variable to be copied.

Figure 251: Configuration of the input Project-No.

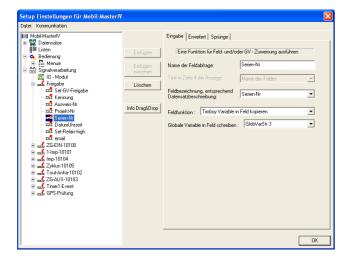
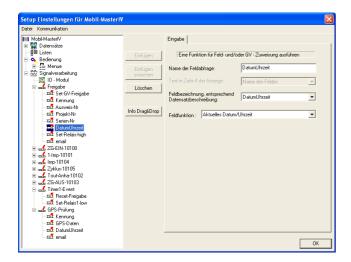
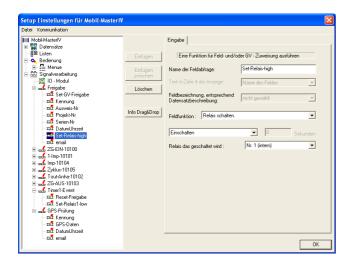



Figure 252: Configuration of the input Serial-No.


The next field is named Serial-No. and assigned to the appropriate, same-named data record field. Select the field function Copy Timeboy variable to field and set GlobVarStr3 (= third ASCII-variable of Timeboy (SSerial-No.)) as variable, whose content shall be written on the field Project.

The next field is named DateTime. Assign the field function Current date_time. The field description is set to DateTime automatically then.

Figure 253: Configuration of the input DateTime

The penultimate field of our input chain is named Set relay high. In order to switch a relay on you have to select the field function Switch relay. Set Switch-on and assign the internal relay 1 under Relay to be switched.

Figure 254: Configuration of the input Set relay high

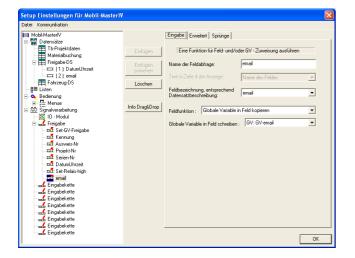
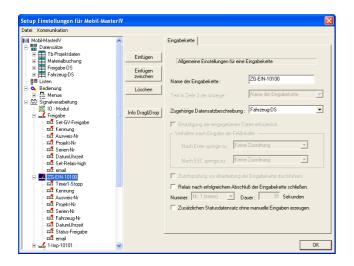
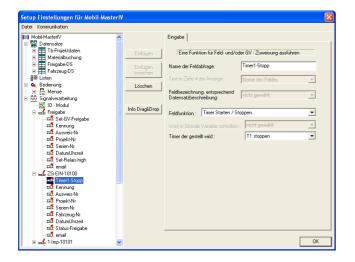


Figure 255: Configuration of the input Email

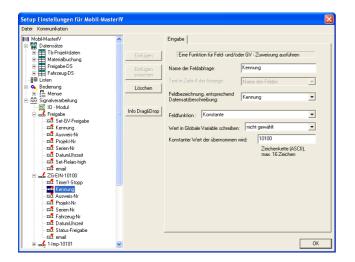

The last field is named Email. Assign the samenamed field description. The content of the GVemail is written on the data record field Email via the function Copy global variable to field.


Caution:

The input chain fields Card-No., Project-No., Serial-No., Date_Time and Email are used in this setup for several times. The settings are always the same. Therefore this fields will not be explained again.

The second input chain is named IG-ON-10100. Assign the data record description Vehicle-DS. The other options of this page are not used. Click on Paste nine times to add 9 input chain fields to the input chain.

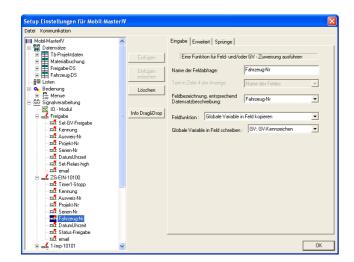
Figure 256: Input chain 2 (ZG-ON-10100)



T1 under Timer to be set.

Mark the next field and name it Timer1-Stop. Set the field function Start/Stop timer and select Stop

Figure 257: Configuration of the input Timer1-Stop



Field 2 is named Identification. Please assign the appropriate, same-named data record description. Select the field function Constant and set 10100 as constant value.

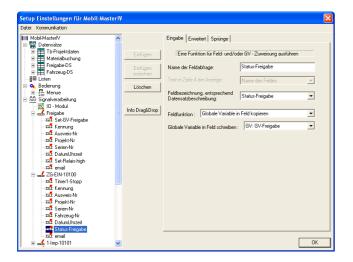
Figure 258: Configuration of the input Identification

DYou may find the settings of the input chain fields Card-No., Project-No. and Serial-No. in figure 248, 251 and 252.

The next field is named Vehicle-No. The appropriate data record description is the field Vehicle-No. Select the function Copy global variable to field to write the content of the variable GV-licence-number on the data record field.

This field (with the same settings) is used for several times. Therefore it will not be explained again.

Figure 259: Configuration of the input Vehicle-No



Caution:

The field Vehicle-No. (with the same settings) is used for several times in this setup. Therefore it will not be explained again.

You may find the settings of Date_Time in figure 253.

The eighth field is named Status release. Assign the same-named data record field. The release status (saved in the GV-release) is written on the selected data record field via the field function Copy global variable to field (and the appropriate variable selection).

Figure 260: Configuration of the input Status release

Caution:

The field Status release (with the same settings) is used for several times in this setup. Therefore it will not be explained again.

You may find the settings of Email in figure 255. The input chain 2 is finished then.

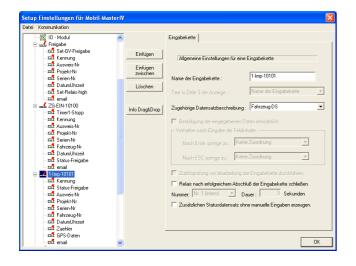
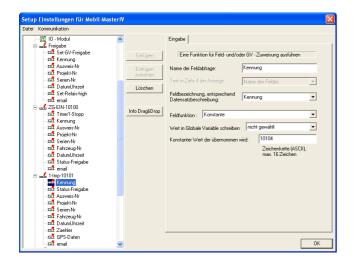
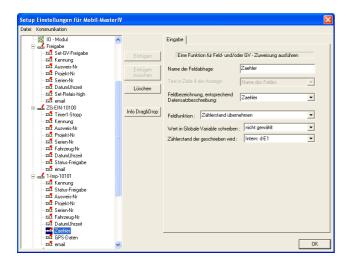



Figure 261: Input chain 3 (1-Imp-10101)

The next input chain is named 1-Imp-10101. Assign the data record description Vehicle-DS to this input chain. The other options are not activated. Add 10 input fields to this input chain.



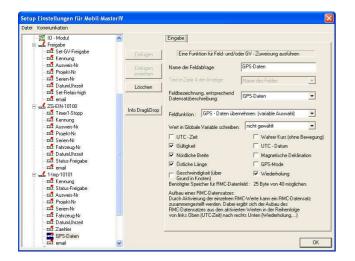
The first field is named Identification. Assign the same-named data record description. Select the field function Constant and set the constant value 10104 for identification.

Figure 262: Configuration of the input Identification

You may find the settings of the following fields in the appropriate figures.

Status-Freigabe (figure 260), Ausweis-Nr (figure 248), Projekt-Nr (figure 251), Serien-Nr (figure 252), Fahrzeug-Nr (figure 259) und DatumUhrzeit (figure 253).

Field eight of 1-Imp-10101 is named Counter. Assign the same-named field description. Set the field function Apply counter reading. Select Intern: d-E1 under Counter reading to be written.


Figure 263: Configuration of the input Counter

Caution:

The counter reading is also read out in other input chains (with the same settings). Therefore this field will not be explained again.

The next field is used to write the GPS position data on a data record field. It is named GPS data and assigned to the same-named field description. Select the field function Apply GPS data (variable selection). That way the GPS data are limited to the necessary information. Please activate the following options: validity, Northern longitude, Eastern latitude and repetition.

Figure 264: Configuration of the input GPS data

!

The field GPS data (with the same settings) is used for several times in this setup. Therefore it will not be explained again.

You may find the settings of Email in figure 255. The input chain 3 is finished then.

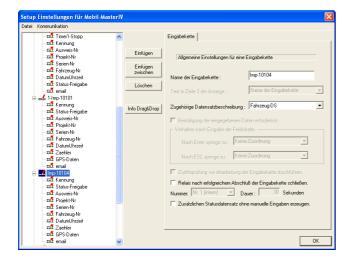
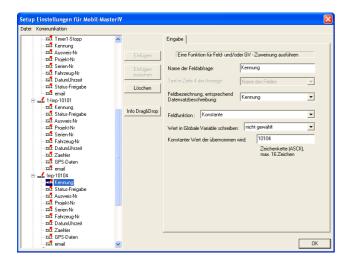
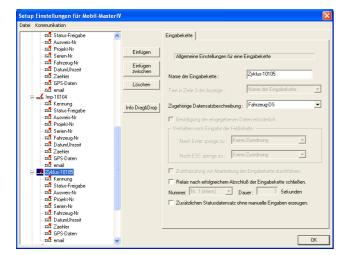



Figure 265: Input chain 4 (Imp-10104)

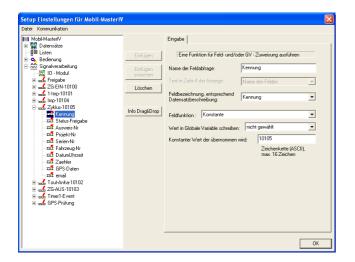
The fourth input chain is named Imp-10104. Assign the data record description Vehicle-DS and add 10 input chain fields (by clicking on Paste ten times).



The first field is used to identify the data record. Name it Identification and assign the appropriate data record description. Select the field function Constant and set 10104 as constant value for identification.

Figure 266: Configuration of the input Identification

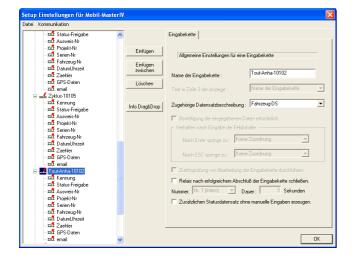
You may find the settings of the following fields in the appropriate figures. . Status-Freigabe (figure 260), Ausweis-Nr (figure 248), Projekt-Nr (figure 251), Serien-Nr (figure 252), Fahrzeug-Nr (figure 259), DatumUhrzeit (figure 253), Zaehler (figure 263), GPS-Daten (figure 264) und email (figure 255). Input chain 4 is finished then.



input chain fields (by clicking on Paste ten times).

The fifth input chain is named Cycle-10105. Assign the data record description Vehicle-DS and add 10

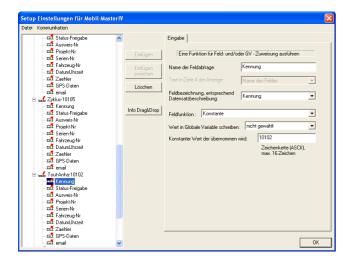
Figure 267: Input chain 5 (Zyklus-10105)



Again the first field is used to identify the data record. Name it Identification and assign the appropriate data record description. Select the field function Constant and set 10105 as constant value for identification.

Figure 268: Configuration of the input Identification

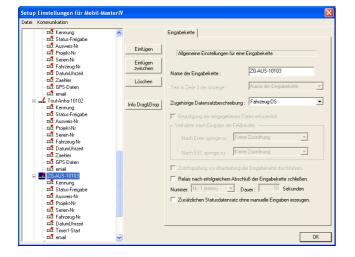
You may find the settings of the following fields in the appropriate figures. **Status-Freigabe** (figure 260), **Ausweis-Nr** (figure 248), **Projekt-Nr** (figure 251), **Serien-Nr** (figure 252), **Fahrzeug-Nr** (figure 259), **DatumUhrzeit** (figure 253), **Zaehler** (figure 263), **GPS-Daten** (figure 264) und **email** (figure 255). Input chain 5 is finished then.



Assign the data record description Vehicle-DS and add 10 input chain fields (by clicking on Paste ten times).

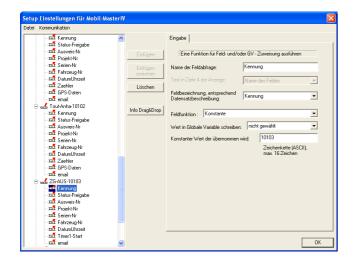
The next input chain is named Tout-Anha-10102.

Figure 269: Input chain 6 (Tout-Anha-10102)



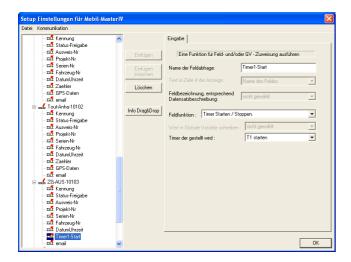
The first field is used to identify the data record. Name it Identification and assign the appropriate data record description. Select the field function Constant and set 10102 as constant value for identification.

Figure 270: Configuration of the input Identification


You may find the settings of the following fields in the appropriate figures. **Status-Freigabe** (figure 260), **Ausweis-Nr** (figure 248), **Projekt-Nr** (figure 251), **Serien-Nr** (figure 252), **Fahrzeug-Nr** (figure 259), **DatumUhrzeit** (figure 253), **Zaehler** (figure 263), **GPS-Daten** (figure 264) und **email** (figure 255). Input chain 6 is finished then.

Mark the next data record and name it IG-OFF-10103 (on the right side). Assign the data record description Vehicle-DS and add 9 fields.

Figure 271: Input chain 7 (ZG-AUS-10103)

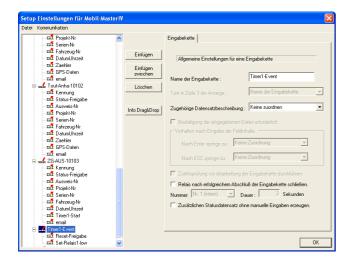


The first field is used to identify the data record. Name it Identification and assign the appropriate data record description. Select the field function Constant and set 10103 as constant value for identification.

Figure 272: Configuration of the input Identification

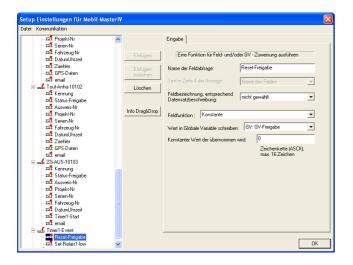
You may find the settings of the following fields in the appropriate figures..

Status-Freigabe (figure 260), Ausweis-Nr (figure 248), Projekt-Nr (figure 251), Serien-Nr (figure 252), Fahrzeug-Nr (figure 259) und DatumUhrzeit (figure 253).



Mark the penultimate field of IG-OFF-10103 and name it Timer1-Start. Set the field function Start/Stop timer and select Start T1 under Timer to be set.

Figure 273: Configuration of the input Timer1-Start


At next you have to edit the field Email. You may find the necessary settings in figure 255. The seventh input chain is finished then.

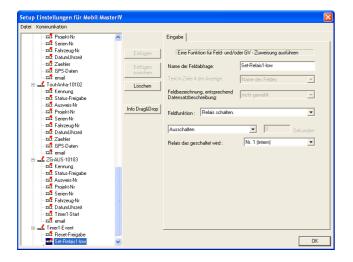
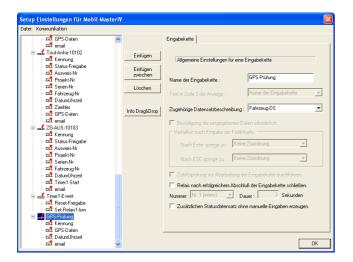
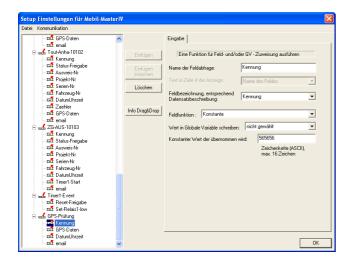

The next input chain is named Timer1-Event. It is used to change the release status and to switch a relay. You do not want to create a data record. Therefore no data record description is assigned. Create 2 fields for this input chain.

Figure 274: Input chain 8 (Timer1-Event)

This field is named Reset release. Because no data record description was assigned, there is also no field description to be assigned. You need the field function Constant to set the value of GV-Release to 0. Assign the GV-Release under Write global variable on field. The value (0) to be written on the GV is set under Constant value to be applied.


Figure 275: Configuration of the input Reset release

Via this field you want to switch off the internal relay 1. Please enter the name Set relay low and select the field function Switch relay. Set Switch off and select the relay no.1 (internal) as relay to be switched.


Figure 276: Configuration of the input Set Relay low

The last input chain is named GPS check. Assign the data record description Vehicle-DS and add 4 data record fields.

Figure 277: Input chain 9 (GPS-Prüfung)

The first field is used to identify the data record. Name it Identification and assign the appropriate data record description. Select the field function Constant and set 565656 as constant value.

Figure 278: Configuration of the input Identification

You may find the settings of the following fields in the appropriate figures. **GPS-Daten** (figure 264), **DatumUhrzeit** (figure 253) und **email** (figure 255). Now all input chains of the Mobil-MasterIV-setup are finished.

Setting the operating mode

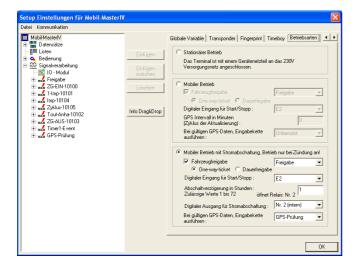


Figure 279: Configuration of the operating modes

Select the operating mode Mobile operation with power off, operation only after ignition under the register card Operating modes (you can get there via the arrow keys (). Activate the vehicle release and assign the input chain Release (on the right side). Activate the option One-way-ticket for Release. The digital input for start/stop is E2. Set a follow-up time of 1 hour under switch-off delay. The relay for power-off is A2. Assign the data record GPS check under Valid GPS data, carry out input chain.

Setting the signal processing

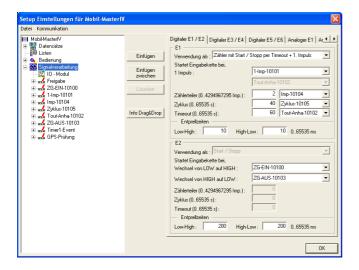
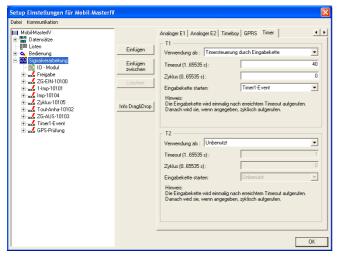
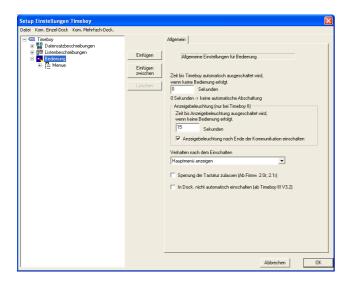



Figure 280: Settings of the signal processing

Mark the field Signal processing. Now you can configure the inputs on the right side. Assign the use as Counter with start/stop via timeout and 1st impulse to the first input E1. Assign an input chain to the events. Set the input chain 1-Imp-10101 for the first impulse, i.e. the input chain is started with the first impulse. Set 2 as counter splitter and assign the input chain Imp-10104, i.e. each second impulse (being registered after the first one) starts the input chain. The time value of the cycle is set to 40. You assign the input chain Cycle-10105 to it, i.e. this input chain is carried out each 40 seconds during operation. Set 60 for the timeout and assign the input chain Tout-Anha-10102, i.e. the input chain is carried out, if no signal is registered for 60 seconds. The following settings you have to carry out for the second input E2: Set the input chain IG-ON-10100 for Low to High (switching-on) and the input chain IG-OFF-10103 for High to Low (switching-off). Set a debounce time of 200 each.

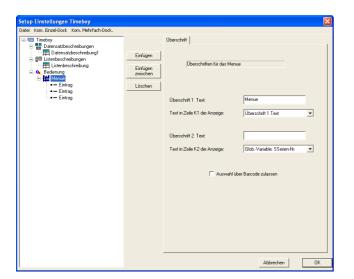
The other digital and analogous inputs are not used. The options on the register cards Timeboy (plugging-in and pulling-out events of Timeboy) and GPRS (alive data record) are also not used.



Via the arrow keys (◀ ▶) you navigate to the register card Timer. Here you define the timer, started in input chain 7 (figure 273) and stopped in input chain 2 (figure 257) Select Timer control via input chain under Use. The timeout is set to 40, the cycle to 0. If the timer in input chain 7 is started now and the timeout elapses, input chain 8 is started (timer1-event, to assign under Start input chain).

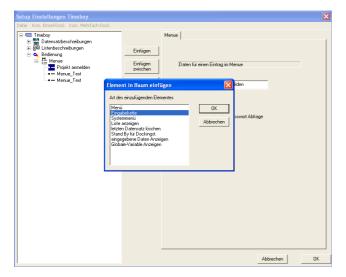
Figure 281: Timer settings of the signal processing

5.3.2.5.2 Device operation of the Timeboy


The Timeboy shall be used to collect project data (Card-No., Project-No., Serial-No.) and material booking data (Card-No., yard, material, amount), which are transmitted to the Mobil-MasterIV to be sent.

Mark Operation on the left side. Then you can carry out the necessary settings on the right side. Set the time till the Timeboy switches off automatically to 0 and the time till the display light switches off to 15 seconds.

Figure 282: General settings for the operation of the Timeboy setup



Mark the menu. Now you can define the display of the Timeboy. The text in the first line is not changed. In line 2 you want to display the content of the GV SSerial-No.

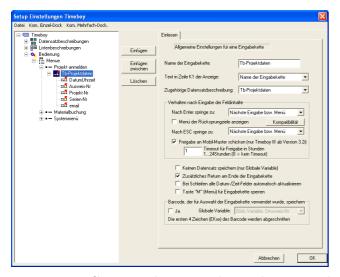
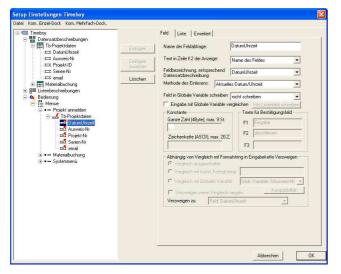
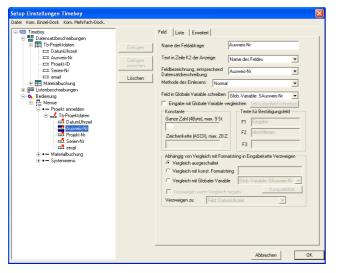

Click on Paste three times to create 3 menu items.

Figure 283: Creating the input chains of the Timeboy setup

Mark the first item and name it Register project. Click on Paste and select Input chain in the selection dialogue.


Figure 284: Input chains of the Timeboy setup

Mark the input chain created just now and name it Tb project data. Assign the same-named data record description. Activate the release option for the Mobilmaster and set a timeout of 1 hour. In order to avoid incorrect data records you also activate the option Additional return at the end of the input chain. Create 5 input chain fields at next.


Figure 285: Creating the input chain Tb project data

The first field of the input chain is named Date_Time. Assign the same-named field description. Select Current date_time as method of reading-in. You can ignore the following register cards (List and Expanded), because no further settings are set there.

Figure 286: Configuration of the input DateTime

Click on the second field and name it Card-No. Assign the same-named data record description. Select Normal as method of reading-in. This card-no. is saved by assigning the GV SCard-No. (under Write field on global variable). No further settings are set on the register card List.

Figure 287: Configuration of the input Card-No.

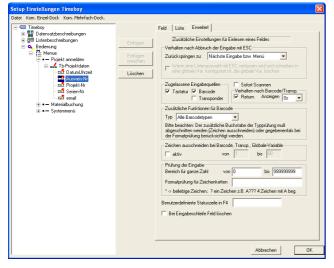
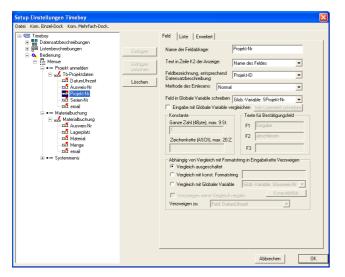
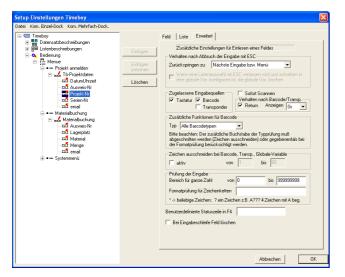



Figure 288: Expanded characteristics of Card-No.


At next you have to select keyboard and bar code as permitted input sources and to activate the option Return under Expanded. That means, the card numbers have to be entered by hand or via bar code. Then the input has to be confirmed via Return.

The next field of the input chain is named Project-No. Assign the field description Project-ID. Select Normal as method of reading-in. You can ignore the register card List, because no further settings are set there.

Figure 289: Configuration of the input Project-No.

Again the permitted input sources keyboard and bar code and the option Return are activated under Expanded.

Figure 290: Expanded characteristics of Project-No.

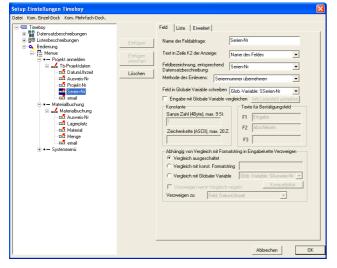
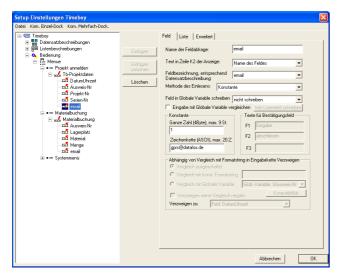
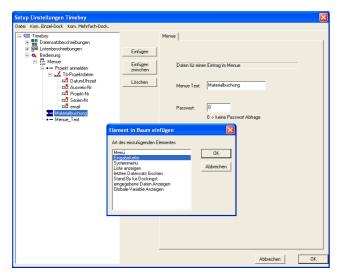



Figure 291: Configuration of the input Serial-No.


Mark the next field and name it Serial-No. Assign the same-named data record description. Set Apply serial-no. as method of reading-in. You want to write it on the GV SSerial-No. For this data record field the register cards List and Expanded are of no importance.

The last field of Tb project data is named Email. Assign the same-named field description. Select Constant as method of reading-in. Enter gprs@datafox.de for the input chain under Constant. The value of the complete number is irrelevant, because the field type string with ASCII-characters was selected under Field characteristics of data record description.

Figure 292: Configuration of the input Email

Mark the next item and name it Material booking. Click on Paste and select Input chain in the selection dialogue.

Figure 293: Creating the input chain Material booking

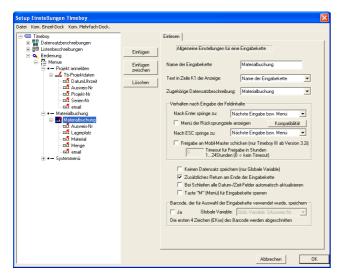
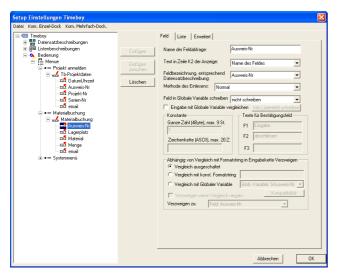
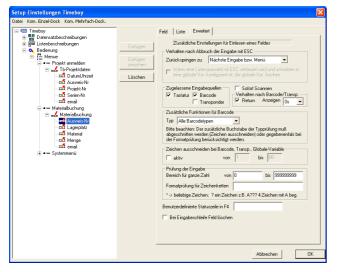



Figure 294: Creating the input chain fields


Mark the input chain created just now and name it Material booking. Assign the same-named data record description. Activate the option Additional return at the and of the input chain. The other options are not activated.

The first field is named Card-No. and assigned to the same-named field description. Set Normal as method of reading-in. The settings on the page List are not changed.

Figure 295: Configuration of the input Card-No.

Again the permitted input sources keyboard and bar code and the option Return are activated under Expanded.

Figure 296: Expanded characteristics of Card-No.

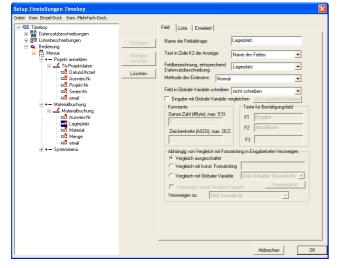
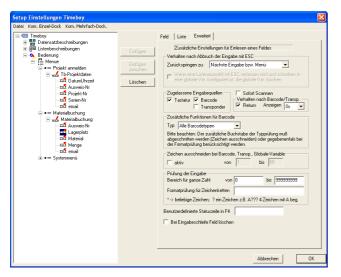
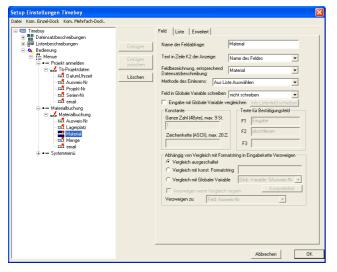



Figure 297: Configuration of the input Yard


The next field is named Yard. Assign the samenamed field description. No settings have to be set under List.

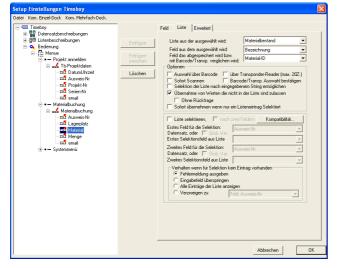
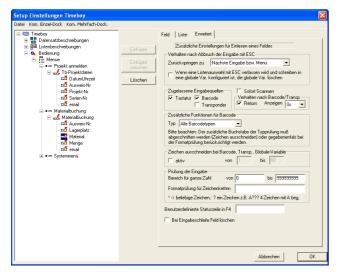
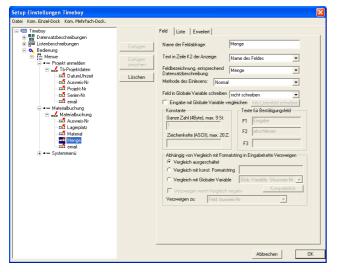

Again the permitted input sources keyboard and bar code lists (used to input the Yard) and the option Return are activated under Expanded.

Figure 298: Expanded characteristics of Yard

The third input chain is named Material. Assign the same-named field description. Set Select from list as method of reading-in.


Figure 299: Configuration of the input Material

Click on List to configure the list selection. Select Material inventory under List to be selected from. The field you select from (or which is shown on the Timeboy display) is Designation. The field whose content you want to save is Material-ID. Furthermore you activate the option Permit transmission of values, that are not in the list. That way you can also collect new materials, which are not in the list.


Figure 300: Configuration of the list selection Material

The material is logged in the bar code lists. But there should also be the possibility to enter material data via the Timeboy keyboard. Therefore you need keyboard and bar code as permitted input sources. Again the option Return is activated to avoid incorrect inputs (e.g. a wrongly written bar code).

Figure 301: Expanded characteristics of Material

The fourth field of Material booking is named Amount and assigned to the same-named field description. Set Normal as method of reading-in. Again no further settings are set under List.

Figure 302: Configuration of the input Amount

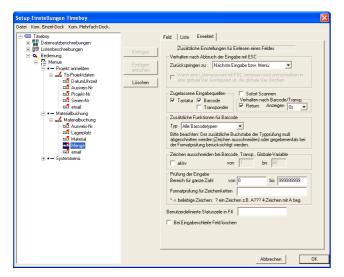
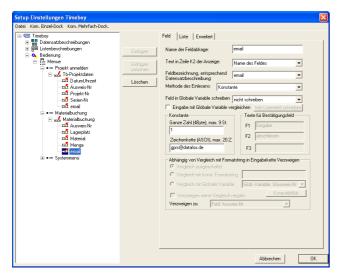



Figure 303: Expanded characteristics of Amount

Set keyboard and bar codes as permitted input sources and activate the option Return under Expanded.

The last field of Material bookings is named Email. Assign the same-named field description. Select Constant as method of reading-in. Enter gprs@datafox.de for the input chain under Constant. The value of the complete number is irrelevant, because the field type string with ASCII-characters was selected under Field characteristics of data record description.

Figure 304: Configuration of the input Email

Mark the last item and name it System menu. Click on Paste and select Menu in the selection dialogue.

Figure 305: Creating a menu

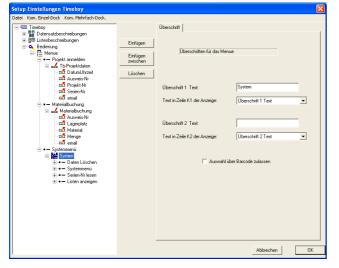
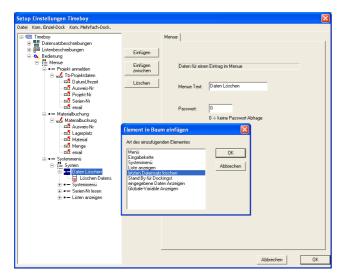
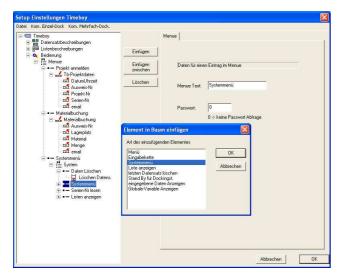



Figure 306: Creating menu items


Click on the menu created just now and name it System. Add 4 menu items (by clicking on Paste).

Mark the first menu item and enter Delete data as menu text. Click on Paste and select Delete last data record. No further settings have to be set.

Figure 307: Creating the menu item Delete data record

Mark the second menu item and name it System menu. Click on Paste and select System menu.

Figure 308: Creating the system menu

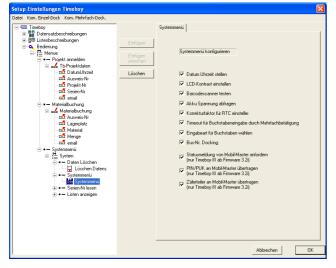
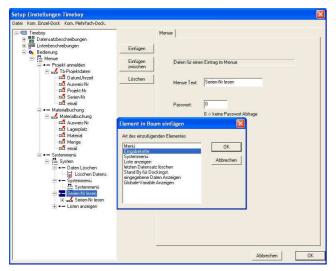
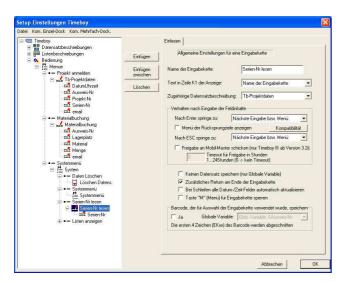



Figure 309: Settings of the system menu


If you click on the system menu created just now, on the right side all available options are shown (also available via Timeboy). Please activate all options.

The third menu item is named Read serial-no. Click on Paste and select Input chain.

Figure 310: Creating the input chain Read serial-no.

The name of the input chain created just now is Read serial-no. Assign the data record description Tb project data and activate the option Additional return at the end of the input chain. Then click on Paste once to create a field for this input chain.

Figure 311: General settings of the input chain Read serial-no.

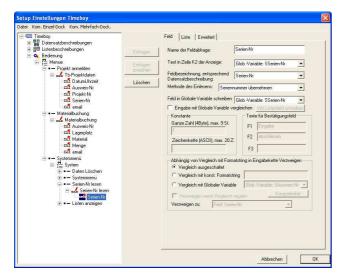
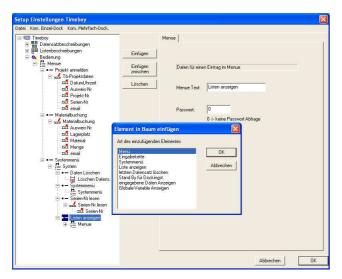
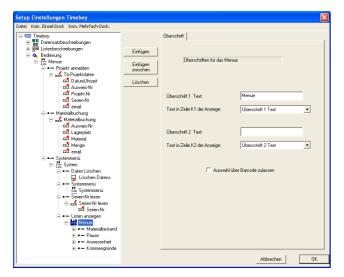



Figure 312: Configuration of the input Serial-No.


Mark the next field and name it Serial-No. Of course the same-named field description is assigned. Select Apply serial-no. as method of reading-in. Select Write field to global variable to write the read value on the GV Serial-No..

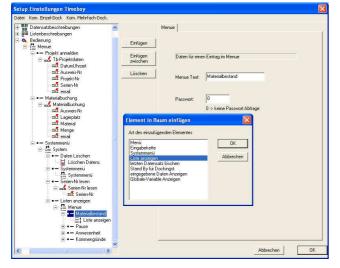
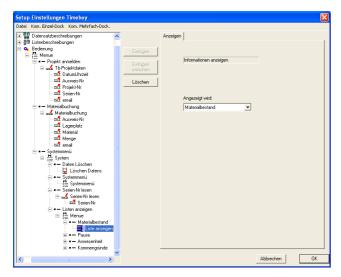

The last item is named Show lists. Click on Paste and select Menu in the selection dialogue.

Figure 313: Creating a menu for Show lists

In the menu 4 menu items are created (by clicking on Paste).


Figure 314: Creating the menu items Show lists

The first menu item is named Material inventory. Click on Paste and select Show list.

Figure 315: Pasting of Show list (material inventory)

On the right side you can select a list. Please select Material inventory here.

Figure 316: Show list (material inventory)

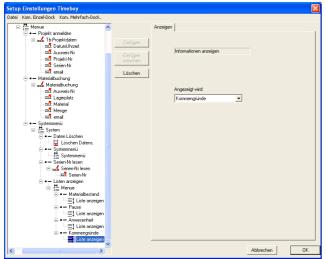


Figure 317: Show lists (entry reasons)

Repeat the last two steps for the 3 remaining menu items. Assign the function Display list to each item and select a list in each case, so that they can be shown on the Timeboy.

5.3.2.6 Setup transmission

When you have worked through all these steps, the setup is ready. In order to check the booking records, the setup has to be transmitted to the device.

5.3.2.6.1 Setup transmission Mobil-MasterIV

Connect the Mobil-MasterIV to the PC according to the selected communication type. Make sure, that the PC interface is configured appropriately; e.g. baud rate, number of data bits, parity and stop bits of the COM-interface have to correspond to the configuration of the terminal.

Now you can transmit the setup to the device via $< Kommunikation => Setup\ schreiben >$. The progress bar indicates, that data are transmitted to the device. A successful conclusion of the transmission is indicated by a message you have to confirm via OK.

Figure 318: Transmitting the setup to the device

In order to check the processes you have to set a different transmission method (e.g. GSM/GPRS) for the device, because the Timeboy docking station is connected to the RS232 interface via null-modem-cable. For this you have to open the Bios-settings via

< Kommunikation => Ger" atekonfiguration(Bios) >. You may find further information in chapter 4.5.12.

5.3.2.6.2 Setup transmission of the Timeboy

Now the setup is finished. Save it via $< Datei => < Speichern\ unter >$ on the hard disk. Plug the device in the docking station to transmit the setup and select Write setup in the menu under $< Kom.\ Einzel - Dock. >$ or rather $< Kom.\ Mehrfach - Dock >$. While transmitting the data the LED of the respective station is flashing. During transmission the Timeboy must not be removed from the docking station! If you remove the device early (i.e. the setup is not transmitted completely), the message $< Bed.\ Stop >$ is shown on the display and the device cannot be operated. In that case you have to transmit the setup again.